Forgot password?
 Create new account
View 103|Reply 0

$\tan (z)=\frac{2}{\pi} \int_0^{\infty} \frac{t^{\frac{2 z}{\pi}}-1}{t^2-1} d t$

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2024-6-10 21:13:09 |Read mode
functions.wolfram.com/ElementaryFunctions/Tan/07/01/01/0002/
$\displaystyle\tan (z)=\frac{2}{\pi} \int_0^{\infty} \frac{t^{\frac{2 z}{\pi}}-1}{t^2-1} d t \quad 0<\operatorname{Re}(z)<\frac{\pi}{2}$如何證明
  1. Tan[z] == (2/Pi) Integrate[(t^((2 z)/Pi) - 1)/(t^2 - 1), {t, 0, Infinity}] /; 0 < Re[z] < Pi/2
Copy the Code

手机版Mobile version|Leisure Math Forum

2025-4-20 22:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list