Forgot password?
 Register account
View 222|Reply 3

[组合] 牛顿公式 无穷多$x_n$

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2024-6-11 08:30 |Read mode
序列$\{x_j:j\inN\}$,对称多项式
\begin{array}{l}\Pi_k=\sum_{1\le n_1<n_2<\dots<n_k}x_{n_1}x_{n_2}\ldots x_{n_k}\\
S_k=\sum_{1\le j} x_j^k\end{array}牛顿公式:\begin{array}{r}S_1-\Pi_1=0 \\ S_2-S_1 \Pi_1+2 \Pi_2=0 \\ S_3-S_2 \Pi_1+S_1 \Pi_2-3 \Pi_3=0 \\ S_4-S_3 \Pi_1+S_2 \Pi_2-S_1 \Pi_3+4 \Pi_4=0\\\dots\end{array}当$x_j=0\;\forall j>n$时,就是有限项$x_1,\ldots,x_n$的牛顿公式.

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2024-6-11 20:20
韦达定理而已...

对于任意$x_i, i\in\{1,2,...,j\}$,都有
\[x_i^k-x_i^{k-1}\Pi_1+...+(-1)^k\Pi_k=0\]
对$i$从$1$到$j$求和就出结果了

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-6-11 21:17
战巡 发表于 2024-6-11 12:20
对于任意$x_i, i\in\{1,2,...,j\}$,都有
\[x_i^k-x_i^{k-1}\Pi_1+...+(-1)^k\Pi_k=0\]
不是$\Pi_k=\sum_{1\le n_1<n_2<\dots<n_k\le j}x_{n_1}x_{n_2}\ldots x_{n_k}$吧

是$\Pi_k=\sum_{1\le n_1<n_2<\dots<n_k}x_{n_1}x_{n_2}\ldots x_{n_k}$
例如$\Pi_1=x_1+x_2+\cdots+x_j+\cdots$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-6-11 21:22
战巡 发表于 2024-6-11 12:20
韦达定理而已...
这帖说当 `k\geqslant n` 时能用韦达定理直接得出。但 `k<n` 时不能吧,因为右边多出一些负幂。

这里是 `k<n` 的情况,因为$n=\infty$.

Mobile version|Discuz Math Forum

2025-5-31 10:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit