Forgot password?
 Register account
View 204|Reply 2

[几何] 在$y=x^3$的奇点[0,1,0]观察它

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2024-6-12 21:31 |Read mode
$P:(0,-1)$
$l:y=1$
过$P$作任意直线交$l$于$Q$,交$y=x^3$于$R$(緑色)
则$R$关于$PQ$的调和共轭在$y^2=x^3$上(红色)。
375px-Neil-parab-p.svg[1].png
en.wikipedia.org/wiki/Semicubical_parabola#Re … and_a_cubic_function
$\ldots$involutory perspectivity$\ldots$The cusp (origin) of the semicubical parabola is exchanged with the point at infinity of the y-axis.

infinity of the y-axis就是[0,1,0]吧。借助这个射影变换可以在$y=x^3$的奇点[0,1,0]观察它。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-6-12 21:37
有奇点的二次曲线必是可约的(两条直线)。
有奇点的不可约三次曲线必是有理的,而且只有1个奇点,如$y=x^3$.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-6-12 21:44
Czhang271828 发表于 2024-6-6 11:07
$\ldots$的 function field$\ldots$
a variety 是有理的 当且仅当 其 function field 纯超越:math.stackexchange.com/questions/284767/
例如,$y^2=1-x^2$有理,其 function field 是$k(x + \sqrt{1-x^2})$,且$k(x + \sqrt{1-x^2})/k$纯超越。
例如,$y=x^3$有理,其 function field 是$k(x)$,且$k(x)/k$纯超越。
例如,$y^2=x^3-x$不是有理的,其 function field 是$k(x, \sqrt{x^3-x})$,且$k(x, \sqrt{x^3-x})/k$不是纯超越的:math.stackexchange.com/questions/5278/

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit