Forgot password?
 Register account
View 235|Reply 2

[不等式] 求一个多元分式的最小值

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2024-6-18 07:50 |Read mode
(1)设$a,b,c>0$,若$x>a,y>b,z>c$,求$\dfrac{(x+y+z)^2}{\sqrt{x^2-a^2}+\sqrt{y^2-b^2}+\sqrt{z^2-c^2}}$的最小值。
(2)设$a_i>0(i=1,2,\cdots ,n)$,且$a_i$互不相同,若$n\geqslant 2$,且$x_i>a_i$,求$\dfrac{(x_1+x_2+\cdots +x_n)^2}{\sqrt{x_1^2-a_1^2}+\sqrt{x_2^2-a_2^2}+\cdots +\sqrt{x_n^2-a_n^2}}$的最小值。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2024-6-18 10:46
由闵可夫斯基有
\[\left(\sum\sqrt{x^2-a^2}\right)^2+\left(\sum\sqrt{a^2}\right)^2\leqslant\left(\sum\sqrt{x^2-a^2+a^2}\right)^2,\]
得到
\[\sqrt{x^2-a^2}+\sqrt{y^2-b^2}+\sqrt{z^2-c^2}\leqslant\sqrt{(x+y+z)^2-(a+b+c)^2},\]
由均值有
\[\sqrt{(x+y+z)^2-(a+b+c)^2}\sqrt{(a+b+c)^2}\leqslant\frac{(x+y+z)^2}2,\]
所以
\[\text{原式}\geqslant\frac{(x+y+z)^2}{\sqrt{(x+y+z)^2-(a+b+c)^2}}\geqslant2(a+b+c),\]
取等懒得写(应该没问题)。

同理可证多元的。

Comment

NB,我只想到了闵可夫斯基,但这个均值没想到,绝了!  Posted 2024-6-18 16:04

Mobile version|Discuz Math Forum

2025-5-31 10:55 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit