|
Last edited by hbghlyj 2025-3-8 19:40当 $n \geqslant 3$ 时,注意到代数不等式:设 $x_i \in\left(0, \frac{1}{2}\right)$ ,且 $\sum_{i=0}^n x_i=1$ ,则
\[
\prod_{i=0}^n\left(1-2 x_i\right) \geqslant(n+1)^{n+1} \cdot(n+1)^{\frac{n+1}{n}} \cdot\left(\prod_{i=0}^n x_i\right)^{\frac{n+1}{n}}
\]
其中等号当且仅当 $x_0=x_1=\cdots=x_n=\frac{1}{n+1}$ 时取得. |
|