Forgot password?
 Register account
View 3134|Reply 13

[不等式] 陈不等式$a(a+b+c)+bc=4-2\sqrt3$ 有无别解

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2013-8-22 00:24 |Read mode
Last edited by isee 2013-8-22 12:50链接:bbs.pep.com.cn/thread-476763-1-1.html

除原链接中基本不等式搞定外,还有别解么?

若$a,b,c>0$,且$a(a+b+c)+bc=4-2\sqrt3$,则$2a+b+c$的最小值是______。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2013-8-22 00:39
\[
4-2\sqrt3=a(a+b+c)+bc\leqslant a^2+a(b+c)+\frac{(b+c)^2}4=\left(a+\frac{b+c}2\right)^2
\]算另一种解法吗

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2013-8-22 12:14
回复 2# kuing


   
算,,这样变形……像几何的线段和差一般

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2013-8-22 12:30
换汤不换药有

\begin{align*}
4-2\sqrt3&=a(a+b+c)+bc\\
&=a^2+ab+ac+bc\\
16-8\sqrt3&=4a^2+4ab+4bc+4ca
\end{align*}



\begin{align*}
(2a+b+c)^2&=4a^2+b^2+c^2+4ab+2bc+4ca\\
&=4a^2+4ab+4bc+4ca+b^2+c^2-2bc\\
&=16-8\sqrt3+(b-c)^2\\
&\cdots
\end{align*}

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2013-8-22 12:34
Last edited by isee 2013-8-22 12:48能不能换元?尝试$$t=2a+b+c$$


\begin{align*}
b+c&=t-2a\\[2em]

4-2\sqrt3&=a(a+b+c)+bc\\[1ex]
&=a^2+a(b+c)+bc\\[1ex]
&=a^2+a(t-2a)+bc\\[1ex]
&=at-a^2+bc\\[1ex]
&\leqslant at-a^2+\left(\frac {b+c}{2}\right)^2\\[1ex]
&=at-a^2+(\frac t2 -a)^2\\[1ex]
&=at-a^2+\frac {t^2}4 -at+a^2\\[1ex]
&=\frac {t^2} 4
\end{align*}

晕,抓住等号成立条件后,随便套

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2013-8-22 12:45
Last edited by isee 2013-8-22 12:58能不能联系二次函数或一元二次方程?
由楼上有:

\begin{align*}
b+c&=t-2a\\[1em]
4-2\sqrt3&=at-a^2+bc
\end{align*}



\begin{align*}
b+c&=t-2a\\[1em]
bc&=4-2\sqrt3-at+a^2
\end{align*}

构造关于$x$的二次方程

\begin{align*}
x^2-(t-2a)x+(4-2\sqrt3-at+a^2)=0
\end{align*}

只用判别式可否?

目测一下,判别式后只剩下$t$了,可行,结合条件应该考虑有两正根情形

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2013-8-22 15:20
换汤不换药:
$(2a+b+c)^2=4a^2+4a(b+c)+(b+c)^2\geqslant4a^2+4a(b+c)+4bc=4[a(a+b+c)+bc]=4(4-2\sqrt3)$

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2013-8-22 20:35
回复 7# 其妙


也赞

是否山穷水尽了呢

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2016-12-29 09:38
回复 1# isee
可以用最平常的方法消去b或c,不妨c=(4-2根号3)/(a+b)-a,
代入目标得(4-2根号3)/(a+b)+(a+b)基本不等式OK!很平常啊!
不过也可以眼睛看下就OK了。高手均知。呵呵。。。

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

踏歌而来 Posted 2016-12-30 17:27
回复 1# isee

链接:bbs.pep.com.cn/thread-476763-1-1.html
打不开。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2016-12-30 18:11

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-12-30 18:29
回复 10# 踏歌而来

以后见到类似于:
http://bbs.pep.com.cn/thread-476763-1-1.html
这样的链接时,将其改为:
http://bbs.pep.com.cn/forum.php?mod=viewthread&tid=476763
即可打开。

PS、其实人教论坛的管理员在后台稍作设置应该就可以解决这问题,不需要我们手动改链接的,可惜那边没人会理这些小事。

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

踏歌而来 Posted 2016-12-30 23:18
谢谢!

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2017-1-2 14:26
回复 13# 踏歌而来

重庆高考题?

Mobile version|Discuz Math Forum

2025-5-31 11:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit