|
kuing
posted 2024-7-3 14:55
Last edited by kuing 2024-7-3 15:01不妨设 `C(0,0)`, `B\bigl(2\sqrt2,2\sqrt2\bigr)`, `A\bigl(4\sqrt2,0\bigr)`,由 `AD=CD` 可设 `D\bigl((4-t)\sqrt2,0\bigr)`, `E(t,t)`,则
\begin{align*}
AE&:\frac y{x-4\sqrt2}=\frac t{t-4\sqrt2},\\
BD&:\frac{y-2\sqrt2}{x-2\sqrt2}=\frac2{t-2},
\end{align*}
联立以上两直线消 `t` 即得交点 `F` 的轨迹方程为
\[\bigl(x-4\sqrt2\bigr)^2+\bigl(2\sqrt2-1\bigr)y^2-8y=0.\]
|
|