Forgot password?
 Create new account
View 208|Reply 3

[不等式] 代数不等式

[Copy link]

83

Threads

51

Posts

763

Credits

Credits
763

Show all posts

lihpb Posted at 2024-7-6 17:03:15 |Read mode
Last edited by hbghlyj at 2025-3-8 19:51:33\[
\sum_{i=0}^n \frac{\left(\sum\limits_{\substack{j=0 \\ j \neq i}}^n \sqrt{a_0 \ldots a_{i-1} a_{i+1} \ldots a_{j-1} a_{j+1} \ldots a_n \sum\limits_{\substack{k=0 \\ k \neq i, j}}^n \frac{1}{a_k}}\right)^2}{a_0 \ldots a_{i-1} a_{i+1} \ldots a_n \sum\limits_{\substack{j=0 \\ j \neq i}}^n \frac{1}{a_j}} \leq \frac{(n-1)\left(\sum\limits_{i=0}^n \sqrt{a_0 \ldots a_{i-1} a_{i+1} \ldots a_n \sum\limits_{\substack{j=0 \\ j \neq i}}^n \frac{1}{a_j}}\right)^2}{\sum\limits_{i=0}^n a_0 \ldots a_{i-1} a_{i+1} \ldots a_n},
\]
等号成立的充要条件是 $a_0=a_1=a_2=\dots=a_n$.
$n\ge3$

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2024-7-7 21:49:18
Last edited by kuing at 2024-7-7 21:59:00自动脑补 `a_i` 全为正。

和式太复杂鸟,先看看 `n=3` 时是怎么样的再说,此时等价于:`a`, `b`, `c`, `d>0`,求证
\begin{align*}
&\frac{\left(\sqrt{ab(\frac1a+\frac1b)}+\sqrt{ac(\frac1a+\frac1c)}+\sqrt{bc(\frac1b+\frac1c)}\right)^2}{abc(\frac1a+\frac1b+\frac1c)}+\frac{\left(\sqrt{ab(\frac1a+\frac1b)}+\sqrt{ad(\frac1a+\frac1d)}+\sqrt{bd(\frac1b+\frac1d)}\right)^2}{abd(\frac1a+\frac1b+\frac1d)}\\
&+\frac{\left(\sqrt{ac(\frac1a+\frac1c)}+\sqrt{ad(\frac1a+\frac1d)}+\sqrt{cd(\frac1c+\frac1d)}\right)^2}{acd(\frac1a+\frac1c+\frac1d)}+\frac{\left(\sqrt{bc(\frac1b+\frac1c)}+\sqrt{bd(\frac1b+\frac1d)}+\sqrt{cd(\frac1c+\frac1d)}\right)^2}{bcd(\frac1b+\frac1c+\frac1d)}\\
\leqslant{}&\frac{2\left(\sqrt{abc(\frac1a+\frac1b+\frac1c)}+\sqrt{abd(\frac1a+\frac1b+\frac1d)}+\sqrt{acd(\frac1a+\frac1c+\frac1d)}+\sqrt{bcd(\frac1b+\frac1c+\frac1d)}\right)^2}{abc+abd+acd+bcd},
\end{align*}
也就是
\begin{align*}
&\frac{\left(\sqrt{a+b}+\sqrt{a+c}+\sqrt{b+c}\right)^2}{ab+ac+bc}+\frac{\left(\sqrt{a+b}+\sqrt{a+d}+\sqrt{b+d}\right)^2}{ab+ad+bd}\\
&+\frac{\left(\sqrt{a+c}+\sqrt{a+d}+\sqrt{c+d}\right)^2}{ac+ad+cd}+\frac{\left(\sqrt{b+c}+\sqrt{b+d}+\sqrt{c+d}\right)^2}{bc+bd+cd}\\
\leqslant{}&\frac{2\left(\sqrt{ab+ac+bc}+\sqrt{ab+ad+bd}+\sqrt{ac+ad+cd}+\sqrt{bc+bd+cd}\right)^2}{abc+abd+acd+bcd}.
\end{align*}

如果作置换 `(a,b,c,d)\mapsto(1/a,1/b,1/c,1/d)`,则变成
\begin{align*}
&\frac{\left(\sqrt{c(a+b)}+\sqrt{b(a+c)}+\sqrt{a(b+c)}\right)^2}{a+b+c}+\frac{\left(\sqrt{d(a+b)}+\sqrt{b(a+d)}+\sqrt{a(b+d)}\right)^2}{a+b+d}\\
&+\frac{\left(\sqrt{d(a+c)}+\sqrt{c(a+d)}+\sqrt{a(c+d)}\right)^2}{a+c+d}+\frac{\left(\sqrt{d(b+c)}+\sqrt{c(b+d)}+\sqrt{b(c+d)}\right)^2}{b+c+d}\\
\leqslant{}&\frac{2\left(\sqrt{d(a+b+c)}+\sqrt{c(a+b+d)}+\sqrt{b(a+c+d)}+\sqrt{a(b+c+d)}\right)^2}{a+b+c+d}.
\end{align*}

作上述置换的意义在于:假如允许上式的变量取零,则取等条件有以下三种:

  • `a=b=c=d>0`;
  • `a=b=c>0` 且 `d=0`,及其轮换;
  • 任意两个变量为零。


看来此题有难度,待续……🤔

83

Threads

51

Posts

763

Credits

Credits
763

Show all posts

 Author| lihpb Posted at 2024-7-8 08:08:36 From the mobile phone
这个是我用几何不等式构造出来的,这些不等式我可以构造出无限个,就是不知道有没有代数方法可以证明(在不知道原几何不等式的情况下)

83

Threads

51

Posts

763

Credits

Credits
763

Show all posts

 Author| lihpb Posted at 2024-7-19 16:13:36
kuing 发表于 2024-7-7 21:49
自动脑补 `a_i` 全为正。

和式太复杂鸟,先看看 `n=3` 时是怎么样的再说,此时等价于:`a`, `b`, `c`, `d> ...
详细过程,因为这是用几何不等式构造出来的,有没有代数方法可以证明连我自己都不知道
kuing.cjhb.site/forum.php?mod=viewthread&tid=12547

手机版Mobile version|Leisure Math Forum

2025-4-22 02:03 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list