Forgot password?
 Register account
View 269|Reply 4

[不等式] 求四元最小值

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2024-7-9 08:39 |Read mode
问题1:已知$ab+bc+cd+da=1$,求$a^2+2b^2+4c^2+8d^2$的最小值。

在一般情况下,问题2能不能求最值?

问题2:已知$p,q,r,s>0$,且$ab+bc+cd+da=M$,求$pa^2+qb^2+rc^2+sd^2$的最小值。

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2024-7-9 10:36
提示:ab+bc+cd+da=(a+c)(b+d)
这名字我喜欢

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2024-7-20 11:42
问题1能不能用均值不等式解答呢?

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2024-7-20 14:18
Last edited by 战巡 2024-7-20 14:41
\[X=\begin{pmatrix}\sqrt{p}a &\sqrt{q}b &\sqrt{r}c&\sqrt{s}d\end{pmatrix}\]
\[A=\begin{pmatrix}0 & \frac{1}{2\sqrt{pq}} & 0 & \frac{1}{2\sqrt{ps}}\\\frac{1}{2\sqrt{pq}} & 0 & \frac{1}{2\sqrt{qr}} & 0\\0 &\frac{1}{2\sqrt{qr}} & 0 & \frac{1}{2\sqrt{rs}}\\\frac{1}{2\sqrt{ps}} & 0 &\frac{1}{2\sqrt{rs}} & 0\end{pmatrix}\]

于是
\[XX^T=pa^2+qb^2+rc^2+sd^2\]
\[XAX^T=ab+bc+cd+ad\]

按最小-最大值定理,有
\[\lambda_{\mbox{min}}\le\frac{XAX^T}{XX^T}\le \lambda_{\mbox{max}}\]
其中$\lambda_{\mbox{min}},\lambda_{\mbox{max}}$分别为$A$的最小和最大特征根,这里不难求出$A$的四个特征根,分别为
\[\lambda_1=\lambda_2=0\]
\[\lambda_3=-\frac{1}{2}\sqrt{\frac{(p+r)(q+s)}{pqrs}}\]
\[\lambda_4=\frac{1}{2}\sqrt{\frac{(p+r)(q+s)}{pqrs}}\]


\[-\frac{1}{2}\sqrt{\frac{(p+r)(q+s)}{pqrs}}\le\frac{XAX^T}{XX^T}\le \frac{1}{2}\sqrt{\frac{(p+r)(q+s)}{pqrs}}\]
\[-XX^T\le 2M\sqrt{\frac{pqrs}{(p+r)(q+s)}}\le XX^T\]
\[XX^T\ge 2|M|\sqrt{\frac{pqrs}{(p+r)(q+s)}}\]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2024-7-21 09:46
战巡 发表于 2024-7-20 14:18

\[X=\begin{pmatrix}\sqrt{p}a &\sqrt{q}b &\sqrt{r}c&\sqrt{s}d\end{pmatrix}\]
\[A=\begin{pmatrix}0  ...
用柯西与均值不等式,可以求得最小值。
我的意思是可不可以只用均值呢?
$a^2+2b^2+4c^2+8d^2$
$=(xa^2+yb^2)+(zb^2+mc^2)+(nc^2+kd^2)+(td^2+sa^2)$
$\geqslant 2\sqrt{xa^2\cdot yb^2}+2\sqrt{zb^2\cdot mc^2}+2\sqrt{nc^2\cdot kd^2}+2\sqrt{td^2\cdot sa^2}$
...

Mobile version|Discuz Math Forum

2025-5-31 11:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit