Forgot password?
 Register account
View 232|Reply 4

[数论] 素数无限的证明

[Copy link]

2

Threads

4

Posts

34

Credits

Credits
34

Show all posts

CharlesCoburg Posted 2024-7-15 20:51 |Read mode
这个递推关系式子是怎么得出来的?
已知Fermat数$ F_n=2^{2^n}+1
\,$$\big($$n\in{N}$$\big)$,下面证明任意两个Fermat数互素,从而必有无穷多个素数,为此我们只需要证明如下递推关系:\[ \prod_{k=0}^{n-1}F_{k}=F_n -2\qquad (n \geqslant1). \]
$ 问:所以上面这个递推关系式是怎么得出来的?这是怎么想到的? $

4

Threads

28

Posts

815

Credits

Credits
815

Show all posts

ic_Mivoya Posted 2024-7-15 22:22
只需注意到平方差公式:
$$2^{2^n}-1=(2^{2^{n-1}}+1)(2^{2^{n-1}}-1)$$

2

Threads

4

Posts

34

Credits

Credits
34

Show all posts

 Author| CharlesCoburg Posted 2024-7-16 10:36
ic_Mivoya 发表于 2024-7-15 22:22
只需注意到平方差公式:
$$2^{2^n}-1=(2^{2^{n-1}}+1)(2^{2^{n-1}}-1)$$
然后呢🤔

2

Threads

4

Posts

34

Credits

Credits
34

Show all posts

 Author| CharlesCoburg Posted 2024-7-16 11:49
ic_Mivoya 发表于 2024-7-15 22:22
只需注意到平方差公式:
$$2^{2^n}-1=(2^{2^{n-1}}+1)(2^{2^{n-1}}-1)$$
哦,知道了,用数学归纳🙂

Comment

继续分解就可以了  Posted 2024-7-16 15:22

Mobile version|Discuz Math Forum

2025-5-31 11:25 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit