Forgot password
 Register account
View 156|Reply 4

[数论] 素数无限的证明

[Copy link]

2

Threads

4

Posts

0

Reputation

Show all posts

CharlesCoburg posted 2024-7-15 20:51 |Read mode
这个递推关系式子是怎么得出来的?
已知Fermat数$ F_n=2^{2^n}+1
\,$$\big($$n\in{N}$$\big)$,下面证明任意两个Fermat数互素,从而必有无穷多个素数,为此我们只需要证明如下递推关系:\[ \prod_{k=0}^{n-1}F_{k}=F_n -2\qquad (n \geqslant1). \]
$ 问:所以上面这个递推关系式是怎么得出来的?这是怎么想到的? $

4

Threads

28

Posts

6

Reputation

Show all posts

ic_Mivoya posted 2024-7-15 22:22
只需注意到平方差公式:
$$2^{2^n}-1=(2^{2^{n-1}}+1)(2^{2^{n-1}}-1)$$

2

Threads

4

Posts

0

Reputation

Show all posts

original poster CharlesCoburg posted 2024-7-16 10:36
ic_Mivoya 发表于 2024-7-15 22:22
只需注意到平方差公式:
$$2^{2^n}-1=(2^{2^{n-1}}+1)(2^{2^{n-1}}-1)$$
然后呢🤔

2

Threads

4

Posts

0

Reputation

Show all posts

original poster CharlesCoburg posted 2024-7-16 11:49
ic_Mivoya 发表于 2024-7-15 22:22
只需注意到平方差公式:
$$2^{2^n}-1=(2^{2^{n-1}}+1)(2^{2^{n-1}}-1)$$
哦,知道了,用数学归纳🙂

Comment

继续分解就可以了  posted 2024-7-16 15:22

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 17:31 GMT+8

Powered by Discuz!

Processed in 0.014942 seconds, 28 queries