Forgot password?
 Register account
View 155|Reply 3

[几何] 简单几何题

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2024-7-24 17:58 |Read mode
Last edited by hbghlyj 2025-4-7 01:25在等边△ABC中,D为BC上一点,将△ABD沿AD翻折得到△AED,过点C作 CF∥AB交 DE于点F, 连接AF,求证:∠CAF=∠EAF.

2

Threads

14

Posts

213

Credits

Credits
213

Show all posts

山川浮云 Posted 2024-7-25 14:52
Last edited by hbghlyj 2025-4-7 01:28$$\angle FCA=120\du -60\du=\angle E.$$
连接$\ CE $可得等腰$\triangle ACE$,等腰$\triangle FCE$,SSS全等得证.

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2024-7-25 15:00
Last edited by kuing 2024-7-25 15:07AE=AB=AC
∠E=∠B=60°=∠ACF
即 △AEF 和 △ACF 中,AE=AC、AF=AF、∠E=∠ACF
不过这样还不能得出这两三角形全等,因为没有 SSA 嘛

可以试试用正弦定理,有
\begin{align*}
\frac{AE}{AF}=\frac{AC}{AF}&\iff\frac{\sin\angle AFE}{\sin\angle E}=\frac{\sin\angle AFC}{\sin\angle ACF}\\
&\iff\sin\angle AFE=\sin\angle AFC,
\end{align*}
那就要么 `\angle AFE=\angle AFC` 要么 `\angle AFE+\angle AFC=180\du`。
前者就得到三角形全等;
而后者会得出 `E`, `F`, `C` 共线,从图形上显然不符(感觉还是不够严谨……

看来还是 2# 的方式比较好,连 `CE`,证 `FE=FC`,从而 SSS

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2024-7-26 08:27
kuing 发表于 2024-7-25 15:00
AE=AB=AC
∠E=∠B=60°=∠ACF
即 △AEF 和 △ACF 中,AE=AC、AF=AF、∠E=∠ACF
非常感谢,我再思考思考!!

Mobile version|Discuz Math Forum

2025-6-7 14:22 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit