Forgot password?
 Register account
View 208|Reply 11

[不等式] 一道易错题

[Copy link]

62

Threads

175

Posts

0

Reputation

Show all posts

nttz posted 2024-7-25 11:54 |Read mode
Last edited by nttz 2024-7-25 12:02$已知a>0,b>0,a+b=2,求\frac{1}{a^2+1} + \frac{1}{b^2+1}的最大值$

$\frac{1}{a^2+1} + \frac{1}{b^2+1} >=\frac{1}{2a} + \frac{1}{2b}$

$=\frac{a+b}{2ab}>=\frac{1}{ab} >= \frac{1}{(\frac{a+b}{2})^2}  = 1$
$取等条件 a=b = 1$
这个解法对么,和网上的解法答案不同

Comment

齐次化,把1都换成$a+b$.  posted 2024-7-26 16:51

13

Threads

901

Posts

8

Reputation

Show all posts

色k posted 2024-7-25 12:35
第一步就反了啊
这名字我喜欢

62

Threads

175

Posts

0

Reputation

Show all posts

original poster nttz posted 2024-7-25 13:27
色k 发表于 2024-7-25 12:35
第一步就反了啊
😭

682

Threads

110K

Posts

206

Reputation

Show all posts

kuing posted 2024-7-25 14:25
这题一般做法是令 `ab=x`,原式通分,可表示成 `x` 的一元函数,即可求最值。
(印象中答案不是 a=b 取等)

Comment

有 a+b=2 的,也有 a+b=1 的,取等条件确实不同  posted 2024-7-25 21:58

768

Threads

4685

Posts

26

Reputation

Show all posts

isee posted 2024-7-25 21:56
源自知乎提问

:若正实数 a, b 满足 $a+b=2$ ,则 $\frac1{1+a^2}+\frac1{1+b^2}$ 的最大值为 $\frac{1+\sqrt 2}2.$

以下应该是最佳解:令 $a=1+\xi,$ $b=1-\xi$ ,则令 $f=\frac1{1+a^2}+\frac1{1+b^2}=\frac{2\xi^2+4}{\xi^4+4},$ 由判别式法容易求得 $f\leqslant\frac{\sqrt 2+1}2.$
isee=freeMaths@知乎

768

Threads

4685

Posts

26

Reputation

Show all posts

isee posted 2024-7-25 21:57
isee 发表于 2024-7-25 21:56
源自知乎提问

题 :若正实数 a, b 满足 $a+b=2$ ,则 $\frac1{1+a^2}+\frac1{1+b^2}$ 的最大值为 $\frac{1 ...
改变条件,亦源自知乎提问

:若 $x>0$ , $y>0$ 且 $x+y=1$ ,求 $\frac{x^2}{1+x^2}+\frac{y^2}{1+y^2}$ 的最小值.

设 $x=\frac12-t$ , $y=\frac12+t$ ,则有 \begin{align*}
\frac1{1+x^2}+\frac1{1+y^2}&=\frac{1+(\frac12-t)^2+1+(\frac12+t)^2}{\left(1+(\frac12-t)^2\right)\left(1+(\frac12+t)^2\right)}\\[1ex]
&=\frac{2z+\frac{5}{2}}{z^2+\frac{3}{2}z+\frac{25}{16}},\, z=t^2\\[1ex]
&=\frac1{\frac{4z+5}{8}+\frac{5}{2(4 z+5)}-\frac{1}{2}},
\end{align*} 注意 $y=\frac{x}8+\frac{5}{2x},\,x\geqslant5$ 时是单调递增的,从而 \begin{align*}
\frac1{1+x^2}+\frac1{1+y^2}&\leqslant\frac1{\frac{5}{8}+\frac{5}{2\cdot5}-\frac{1}{2}}=\frac85,
\end{align*} 所以 \[\frac{x^2}{1+x^2}+\frac{y^2}{1+y^2}=2-\left(\frac1{1+x^2}+\frac1{1+y^2}\right)\geqslant \frac25.\] 当且仅当 $z=0$ 即 $t=0$ 亦即 $x=y=\frac12$ 时取得等号.

Comment

不错,换元  posted 2024-7-26 13:39
isee=freeMaths@知乎

6

Threads

245

Posts

6

Reputation

Show all posts

睡神 posted 2024-7-26 16:06 From mobile phone
Last edited by 睡神 2025-1-18 23:54好久没动过脑子了,已经生锈了,晚点我来写一个,活动活动脑子

令$ a=\tan \alpha,b=\tan \beta$

则  $ a+b =\tan \alpha+\tan \beta=\dfrac{\sin(\alpha+\beta)}{\cos\alpha\cos\beta}=2$

所以  $ \sin(\alpha+\beta)=2\cos\alpha\cos\beta=\cos(\alpha+\beta) +\cos(\alpha-\beta)$

所以  $ \cos(\alpha-\beta)=\sin(\alpha+\beta)-\cos(\alpha+\beta)$

所以  $ \dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}=\cos^2\alpha+\cos^2\beta=\dfrac12 (\cos2\alpha+\cos2\beta)+1$

     $=\cos(\alpha+\beta)\cos(\alpha-\beta)+1=\cos(\alpha+\beta)[\sin(\alpha+\beta)-\cos(\alpha+\beta)]+1$

     $ =\dfrac12 \sin(2\alpha+2\beta)-\dfrac12\cos(2\alpha+2\beta)+\dfrac12 $

     $ =\dfrac{\sqrt2}{2}\sin(2\alpha+2\beta-\dfrac{\pi}{4})+\dfrac12 \le \dfrac{1+\sqrt2}{2} $  

@isee 感觉这样更好玩点
除了不懂,就是装懂

4

Threads

139

Posts

12

Reputation

Show all posts

Aluminiumor posted 2024-7-26 19:34
\begin{align*}
\frac{1}{x^2+1}+\frac{1}{y^2+1} & = \frac{x^2+y^2+2}{x^2y^2+x^2+y^2+1}\\
& = \frac{4(x^2+y^2+2)}{(-2xy)^2+4(x^2+y^2+1)}\\
& = \frac{4(x^2+y^2+2)}{(x^2+y^2-4)^2+4(x^2+y^2+1)}\\

& = \frac{4(x^2+y^2+2)}{(x^2+y^2+2)^2-8(x^2+y^2+2)+32}\\
& \leq\frac{4}{2\sqrt{32}-8}\\
& = \frac{\sqrt{2}+1}{2}
\end{align*}
Wir müssen wissen, wir werden wissen.

4

Threads

139

Posts

12

Reputation

Show all posts

Aluminiumor posted 2024-7-26 19:53
用结果反推:
$$\frac12-\left(\frac{1}{x^2+1}+\frac{1}{(2-x)^2+1}-\frac12\right)^2=\frac{(x^4-4x^3+10x^2-12x+1)^2}{4(x^2+1)^2(x^2-4x+5)^2}\geq0$$
Wir müssen wissen, wir werden wissen.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 02:17 GMT+8

Powered by Discuz! star

Processed in 0.015982 second(s), 25 queries

× Quick Reply To Top Edit