Forgot password?
 Register account
View 292|Reply 5

[不等式] 2024东南地区数学奥林匹克数学竞赛的不等式题

[Copy link]

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

lemondian Posted 2024-7-30 19:59 |Read mode
2024东南地区数学奥林匹克数学竞赛试题(高二第一天第2题):
设$a,b,c,d\in(0,1)$,满足$a^2+b^2+c^2+d^2=3$。求证:$\dfrac{1-a^2}{b+c}+\dfrac{1-b^2}{c+d}+\dfrac{1-c^2}{d+a}+\dfrac{1-d^2}{a+b}<\dfrac{2}{3}$

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2024-7-31 07:50
以下 $\sum_{cyc}$ 简写为 $\sum$
$$\sum\frac{1-a^2}{b+c}<\sum\frac{1-a^2}{b^2+c^2}$$
转化为证明 $$a,b,c,d\in(0,1),a+b+c+d=3,\sum\frac{1-a}{b+c}\leq\frac23$$
即证
$$4-\sum\frac{2-2a}{b+c}=\sum\frac{2a+b+c-2}{b+c}\geq\frac83$$
$$\begin{align*}
S & =\sum\frac{2a+b+c-2}{b+c}\sum\Big((2a+b+c-2)(b+c)\Big)\\
& =\sum\frac{2a+b+c-2}{b+c}\sum\Big((a-d+1)(3-a-d)\Big)\\
& =\sum\frac{2a+b+c-2}{b+c}\sum\Big(-a^2+d^2+2a-4d+3\Big)\\
& =\sum\frac{2a+b+c-2}{b+c}\cdot6
\end{align*}$$

$$S\geq\left(\sum(2a+b+c-2)\right)^2=16$$
故得证.

Comment

第一步竞赛是配平次数证加强,即合理又意外😀  Posted 2024-7-31 19:08
Wir müssen wissen, wir werden wissen.

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

 Author| lemondian Posted 2024-7-31 12:13
Aluminiumor 发表于 2024-7-31 07:50
以下 $\sum_{cyc}$ 简写为 $\sum$
$$\sum\frac{1-a^2}{b+c}<\sum\frac{1-a^2}{b^2+c^2}$$
转化为证明 $$a,b ...
谢谢。
不知还有没有其它证法呢?

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2024-7-31 22:46 From mobile phone
Last edited by hbghlyj 2025-5-18 03:24来源公众号·陈嘉昊的数学自留地
2.设 $a, b, c, d \in(0,1)$,满足 $a^2+b^2+c^2+d^2=3$.证明: $\frac{1-a^2}{b+c}+\frac{1-b^2}{c+d}+\frac{1-c^2}{d+a}+\frac{1-d^2}{a+b}<\frac{2}{3}$.
解答:设 $x=1-a^2, y=1-b^2, z=1-c^2, w=1-d^2$,则 $x+y+z+w=1$.注意到 $\sqrt{1-y}+\sqrt{1-z}>\sqrt{1-y-z}+1 \Leftrightarrow 2 \sqrt{(1-y)(1-z)}>2 \sqrt{1-y-z}$成立,从而
\[
\frac{1-a^2}{b+c}=\frac{x}{\sqrt{1-y}+\sqrt{1-z}}<\frac{x}{\sqrt{1-y-z}+1}=\frac{x}{\sqrt{x+w}+1}<\frac{x}{\sqrt{x}+1} .
\]
设 $f(x)=\frac{x}{\sqrt{x}+1}$,则
\[
f''(x)=-\frac{1}{2(1+\sqrt{x})^2 \sqrt{x}}-\frac{1-x}{(1+\sqrt{x})^4 \sqrt{x}}<0
\]
即 $f$ 在 $(0,1)$ 上为上凸函数,从而
\[
\sum_{c y c} \frac{1-a^2}{b+c}<\sum_{c y c} \frac{x}{\sqrt{x}+1} \leq 4 f\left(\frac{1}{4}\right)=\frac{2}{3} .
\]

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2024-8-1 12:06 From mobile phone
Last edited by hbghlyj 2025-5-18 03:22来源:公众号“恩次方根”
设 $a, b, c, d \in(0,1)$ ,满足 $a^2+b^2+c^2+d^2=3$.求证:
\[
\frac{1-a^2}{b+c}+\frac{1-b^2}{c+d}+\frac{1-c^2}{d+a}+\frac{1-d^2}{a+b}<\frac{2}{3}
\]
这题我没想到将分母的 $a+b$ 直接放成 $a^2+b^2$ ,而是先用
\[
\frac{4}{a+b} \leq \frac{1}{a}+\frac{1}{b}
\]
作了分离,反而得到了一个更强的结果:
证明
\begin{aligned}
& 4 \sum_{c y c} \frac{1-a^2}{b+c} \leq \sum_{c y c}\left(1-a^2\right)\left(\frac{1}{b}+\frac{1}{c}\right)=2 \sum_a \frac{1}{a}-\sum_{c y c} \frac{c^2+d^2}{a}=\sum_{c y c} \frac{2-c^2-d^2}{a} \\
= & \sum_{c y c} \frac{a^2+b^2-1}{a}=\sum a-\sum_{c y c} \frac{1-b^2}{a}<\sqrt{4 \sum a^2}-\sum\left(1-a^2\right)=2 \sqrt{3}-1<\frac{8}{3}
\end{aligned}

Mobile version|Discuz Math Forum

2025-6-7 10:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit