|
Last edited by hbghlyj 2025-5-18 03:24来源公众号·陈嘉昊的数学自留地
2.设 $a, b, c, d \in(0,1)$,满足 $a^2+b^2+c^2+d^2=3$.证明: $\frac{1-a^2}{b+c}+\frac{1-b^2}{c+d}+\frac{1-c^2}{d+a}+\frac{1-d^2}{a+b}<\frac{2}{3}$.
解答:设 $x=1-a^2, y=1-b^2, z=1-c^2, w=1-d^2$,则 $x+y+z+w=1$.注意到 $\sqrt{1-y}+\sqrt{1-z}>\sqrt{1-y-z}+1 \Leftrightarrow 2 \sqrt{(1-y)(1-z)}>2 \sqrt{1-y-z}$成立,从而
\[
\frac{1-a^2}{b+c}=\frac{x}{\sqrt{1-y}+\sqrt{1-z}}<\frac{x}{\sqrt{1-y-z}+1}=\frac{x}{\sqrt{x+w}+1}<\frac{x}{\sqrt{x}+1} .
\]
设 $f(x)=\frac{x}{\sqrt{x}+1}$,则
\[
f''(x)=-\frac{1}{2(1+\sqrt{x})^2 \sqrt{x}}-\frac{1-x}{(1+\sqrt{x})^4 \sqrt{x}}<0
\]
即 $f$ 在 $(0,1)$ 上为上凸函数,从而
\[
\sum_{c y c} \frac{1-a^2}{b+c}<\sum_{c y c} \frac{x}{\sqrt{x}+1} \leq 4 f\left(\frac{1}{4}\right)=\frac{2}{3} .
\] |
|