Forgot password?
 Register account
View 250|Reply 4

[几何] 几何计算题,就是找不到思路

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2024-7-30 20:58 |Read mode
Last edited by hbghlyj 2025-4-7 01:31在Rt△ABC中,∠BAC=90°, D, E为AB上两点(点D在点E的左侧),∠BCD=2∠ACD, CD=BE,点F在BC上,∠EFC=∠ADC,若BF=2,BD= a, AE=b.求CD的长(用含a,b的式子表示)
微信截图_20240730204915.png

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2024-7-30 21:41
Last edited by 战巡 2024-7-31 12:57 p0204.png

如图,作$D$关于$AC$的对称点$G$,并如图连线

令$CD=BE=x$,这样就有$AD=AE+DE=AE+BE-BD=b+x-a$

显然$CG=CD=BE=x$,$DG=2AD$,且$\angle DCG=2\angle DCA=\angle BCD $
那么按角平分线定理,有
\[\frac{CG}{DG}=\frac{BC}{BD}\]
\[\frac{x}{2(b+x-a)}=\frac{BC}{a}\]

另一方面,易证$\Delta BFE\sim\Delta BCD$,有
\[\frac{BF}{BD}=\frac{BE}{BC}\]
\[\frac{2}{a}=\frac{x}{BC}\]
\[BC=\frac{ax}{2}\]
然后代入上面,就有
\[\frac{x}{2(b+x-a)}=\frac{x}{2}\]
\[x=a-b+1\]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2024-7-30 22:07
战巡 发表于 2024-7-30 21:41
如图,作$D$关于$AC$的对称点$G$,并如图连线

令$CD=BE=x$,这样就有$AD=AE+DE=AE+BE-BD=b+x-a$
BC解错了啊!!,但是仍然感谢!

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2024-7-30 22:28
战巡 发表于 2024-7-30 21:41
如图,作$D$关于$AC$的对称点$G$,并如图连线

令$CD=BE=x$,这样就有$AD=AE+DE=AE+BE-BD=b+x-a$
最后一步算错了

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2024-7-30 23:15
2# 的方法没错,最后结果应该是 $x=a-b+1$.
但我在计算时发现,$b$ 的值似乎由 $a$ 决定,也就是说,$x$ 也可以仅用 $a$ 表示.
以下为我的过程:

设 $CD=BE=x,\angle{ACD}=\theta,\sin\theta=s$
由 $\triangle BEF\sim\triangle BCD$ 有 $\dfrac{BE}{BC}=\dfrac{EF}{CD}=\dfrac{BF}{BD}=\dfrac{2}{a}$
则 $BC=\dfrac{ax}{2}$
由正弦定理,
$$\frac{CD}{\sin(\frac\pi2-3\theta)}=\frac{BD}{\sin2\theta}\Longleftrightarrow \frac xa=\frac{\cos3\theta}{\sin2\theta}=\frac{1-4\sin^2\theta}{2\sin\theta}=\frac{1-4s^2}{2s}$$
$$\Longleftrightarrow 4as^2+2xs-a=0\Longrightarrow x=\frac{(1-4s^2)a}{2s}$$
$BD<BE\Longleftrightarrow a<x\Longrightarrow 4s^2+2s-1<0$
$x>0\Longrightarrow 1-4s^2>0$
由余弦定理,
$$CD^2=BC^2+BD^2-2\cdot BC\cdot BD\cdot\cos(\frac\pi2-3\theta)\Longleftrightarrow (a^2-4)x^2+(16s^3-12s)a^2x+4a^2=0$$
消去 $x$, 得 $$a^2[(1-4s^2)a-2][(1-4s^2)a+2(4s^2+2s-1)(4s^2-2s-1)]=0$$
显然只有一解满足题意:$a=\dfrac{2}{1-4s^2}$
容易解得 $$x=2\sqrt{\frac{a}{a-2}}$$
Wir müssen wissen, wir werden wissen.

Mobile version|Discuz Math Forum

2025-6-6 22:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit