Forgot password?
 Create new account
View 110|Reply 2

[数论] Z/nZ 的疑问

[Copy link]

3152

Threads

8505

Posts

610K

Credits

Credits
66261
QQ

Show all posts

hbghlyj Posted at 2024-8-8 11:56:20 |Read mode
Z/nZ = {1, …, n} mod n
Z/mZ = {1, …, m} mod m

能不能再套一层?
(Z/nZ)/m(Z/nZ) =?

3152

Threads

8505

Posts

610K

Credits

Credits
66261
QQ

Show all posts

 Author| hbghlyj Posted at 2024-8-8 12:01:45
d = gcd(m,n)

(Z/nZ)/m(Z/nZ) = (Z/nZ)/(dZ/nZ) ≅ Z/dZ   
这样吗

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2024-8-10 16:02:01
hbghlyj 发表于 2024-8-8 12:01
d = gcd(m,n)

(Z/nZ)/m(Z/nZ) = (Z/nZ)/(dZ/nZ) ≅ Z/dZ   这样吗
以上的 Noether 同构没有问题. 也可以按照定义直接来: $m(\mathbb Z/n\mathbb Z)$ 定义作
$$
\mathbb Z/n\mathbb Z\to \mathbb Z/n\mathbb Z,\quad [d]\mapsto [md]
$$
的像. 以上定义的东西是 $\mathbb Z/n\mathbb Z$ 的等价类, 其中 $[d_1]=[d_2]$ 当且仅当 $[d_1-d_2]$ 是 $[m]$ 的倍数, 也就是 $[d]$ 的倍数 (辗转相除). 由于 $d\mid (d_1-d_2)$ 和 $[d]\mid [d_1-d_2]$ 是等价的, 以上的群同构于 $\mathbb Z/d\mathbb Z$.

手机版Mobile version|Leisure Math Forum

2025-4-23 03:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list