Forgot password
 Register account
View 165|Reply 4

[不等式] 一道三元限制条件的最值

[Copy link]

423

Threads

909

Posts

0

Reputation

Show all posts

lemondian posted 2024-8-13 23:40 |Read mode
Last edited by lemondian 2024-8-14 01:25设$x,y,z\in(0,\sqrt{2})$,且$x^4+y^4+z^4\geqslant 27/4$。求$\dfrac{x}{2x^2-5}+\dfrac{y}{2y^2-5}+\dfrac{z}{2z^2-5}$的最大值。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-8-14 00:02
?条件自相矛盾
`x,y,z\in(0,\sqrt2)` 就有 `x^4+y^4+z^4<4+4+4<16`

Comment

不好意思,原来是别人写错了,我照抄的!  posted 2024-8-14 01:26
已修改了  posted 2024-8-14 01:26

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-8-14 02:01
由五元均值有
\begin{align*}
\frac x{2x^2-5}&=\frac8{3\sqrt3}\cdot\frac{-x^4}{\sqrt{\frac43x^2\cdot\frac43x^2\cdot\frac43x^2\cdot(5-2x^2)\cdot(5-2x^2)}}\\
&\leqslant\frac8{3\sqrt3}\cdot\frac{-x^4}{\sqrt{\left(\frac{10}5\right)^5}}\\
&=-\frac{\sqrt6}9x^4,
\end{align*}
下略。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-22 08:24 GMT+8

Powered by Discuz!

Processed in 0.013663 seconds, 29 queries