Forgot password?
 Register account
View 161|Reply 7

[不等式] 能用权方和不等式证明这个不等式吗

[Copy link]

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

lemondian Posted 2024-9-3 15:54 |Read mode
请问:能用权方和不等式证明这个不等式吗?
已知$x_1,x_2,\cdots ,x_n$为正实数,且$x_1+x_2+\cdots +x_n=1,m\geqslant 2,m\inN^*$,证明:$\dfrac{x_1}{(1-x_1)^m}+\dfrac{x_2}{(1-x_2)^m}+\cdots +\dfrac{x_n}{(1-x_n)^m}\geqslant (\dfrac{n}{n-1})^m$。

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2024-9-3 16:19
\begin{align*}
\sum_{i=1}^n\frac{x_i}{(1-x_i)^m}&\geqslant\frac1n\sum_{i=1}^nx_i\sum_{i=1}^n\frac1{(1-x_i)^m}\quad(\text{切比雪夫})\\
&\geqslant\frac1n\cdot\frac{(1+\cdots+1)^{m+1}}{\bigl(\sum(1-x_i)\bigr)^m}\quad(\text{权方和})\\
&=\frac{n^m}{(n-1)^m}.
\end{align*}

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

 Author| lemondian Posted 2024-9-3 16:27
kuing 发表于 2024-9-3 16:19
\begin{align*}
\sum_{i=1}^n\frac{x_i}{(1-x_i)^m}&\geqslant\frac1n\sum_{i=1}^nx_i\sum_{i=1}^n\frac1{( ...
这样:
$\dfrac{x_i}{(1-x_i)^m}=\dfrac{1}{(1-x_i)^m}-\dfrac{1}{(1-x_i)^{m-1}}$.

然后分别用权方和,行不?

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2024-9-3 16:30
lemondian 发表于 2024-9-3 16:27
这样:
$\dfrac{x_i}{(1-x_i)^m}=\dfrac{1}{(1-x_i)^m}-\dfrac{1}{(1-x_i)^{m-1}}$.

不知道,自己的想法请自行走下去。

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

 Author| lemondian Posted 2024-9-3 16:35
再来一个相似题:
已知$x_1,x_2,\cdots ,x_n(n\geqslant 2)$为正实数,且$x_1+x_2+\cdots +x_n=1,m\geqslant 2,m\inN^*$,证明:$\dfrac{x_1^{\dfrac{m-2}{m-1}}}{1-x_1}+\dfrac{x_2^{\dfrac{m-2}{m-1}}}{1-x_2}+\cdots +\dfrac{x_n^{\dfrac{m-2}{m-1}}}{1-x_n}\geqslant \dfrac{n^2}{n-1}(\dfrac{1}{n})^{\dfrac{m-2}{m-1}}$。

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2024-9-3 16:38
lemondian 发表于 2024-9-3 16:35
再来一个相似题:
已知$x_1,x_2,\cdots ,x_n(n\geqslant 2)$为正实数,且$x_1+x_2+\cdots +x_n=1,m\geqslant 2,m\inN^*$,证明:$\dfrac{x_1^{\dfrac{m-2}{m-1}}}{1-x_1}+\dfrac{x_2^{\dfrac{m-2}{m-1}}}{1-x_2}+\cdots +\dfrac{x_n^{\dfrac{m-2}{m-1}}}{1-x_n}\geqslant \dfrac{n^2}{n-1}(\dfrac{1}{n})^{\dfrac{m-2}{m-1}}$。
请勿滥用 \dfrac

Comment

这个不是非得要权方和来证明。
或者应该新开一个帖子为好。  Posted 2024-9-3 16:42
我说的是公式代码问题  Posted 2024-9-3 16:51

Mobile version|Discuz Math Forum

2025-6-6 16:43 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit