Forgot password?
 Create new account
View 101|Reply 1

[几何] 平面向量之和模最小值

[Copy link]

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

敬畏数学 Posted at 2024-9-13 16:07:55 |Read mode
已知平面向量$ \bm{a},\bm{b},\bm{c}$,满足$ |\bm{a}|=1 $,$ \bm{a}\cdot\bm{b} =1 $,$ \bm{a}\cdot\bm{c} =-2$,$ \bm{b}\cdot\bm{c} =0 $,则$ |\bm{b}+\bm{c} | $的最小值————。 (请教纯几何法)

700

Threads

110K

Posts

910K

Credits

Credits
94212
QQ

Show all posts

kuing Posted at 2024-9-13 17:09:12
不妨设 `\vv{OA}=\bm a=(1,0)`, `\vv{OB}=\bm b`, `\vv{OC}=\bm c`,则 `B` 在  `x=1` 上,`C` 在 `x=-2` 上,由 `\bm b\cdot\bm c=0` 得 `|\bm b+\bm c|=|\bm b-\bm c|=|BC|\geqslant3`,当 `BC\px x` 轴时取等(显然是存在的)。

手机版Mobile version|Leisure Math Forum

2025-4-22 15:55 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list