Forgot password
 Register account
View 143|Reply 1

[几何] 平面向量之和模最小值

[Copy link]

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2024-9-13 16:07 |Read mode
已知平面向量$ \bm{a},\bm{b},\bm{c}$,满足$ |\bm{a}|=1 $,$ \bm{a}\cdot\bm{b} =1 $,$ \bm{a}\cdot\bm{c} =-2$,$ \bm{b}\cdot\bm{c} =0 $,则$ |\bm{b}+\bm{c} | $的最小值————。 (请教纯几何法)

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-9-13 17:09
不妨设 `\vv{OA}=\bm a=(1,0)`, `\vv{OB}=\bm b`, `\vv{OC}=\bm c`,则 `B` 在  `x=1` 上,`C` 在 `x=-2` 上,由 `\bm b\cdot\bm c=0` 得 `|\bm b+\bm c|=|\bm b-\bm c|=|BC|\geqslant3`,当 `BC\px x` 轴时取等(显然是存在的)。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-22 03:42 GMT+8

Powered by Discuz!

Processed in 0.013114 seconds, 27 queries