Forgot password?
 Register account
View 137|Reply 1

[不等式] $|1+z|^4 \leq 1+4 \operatorname{Re} z+8|z|^2+3|z|^4$

[Copy link]

3157

Threads

7925

Posts

610K

Credits

Credits
64218
QQ

Show all posts

hbghlyj Posted 2024-9-14 23:48 |Read mode
Last edited by hbghlyj 2024-9-15 06:54 $type 33225230.pdf (1 MB, Downloads: 65) $z\inC,$
\begin{aligned}
& |1+z|^4 \geq 1+4 \operatorname{Re} z+|z|^2+\frac{1}{5}|z|^4 \\
& |1+z|^4 \leq 1+4 \operatorname{Re} z+8|z|^2+3|z|^4
\end{aligned}

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2024-9-15 02:45
Last edited by Aluminiumor 2024-9-15 12:25令 $z=a+bi,a,b\in\mathbb{R}$
式一即
$$[(a+1)^2+b^2]^2\geq1+4a+a^2+b^2+\frac15(a^2+b^2)^2$$
$$\Longleftrightarrow \frac45\left(a^2+b^2+\frac52a\right)^2+b^2\geq0$$
式二即
$$[(a+1)^2+b^2]^2\leq1+4a+8(a^2+b^2)+3(a^2+b^2)^2$$
$$\Longleftrightarrow 2\left(a^2+b^2-a\right)^2+6b^2\geq0$$
Wir müssen wissen, wir werden wissen.

Mobile version|Discuz Math Forum

2025-6-7 06:49 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit