Forgot password?
 Create new account
View 116|Reply 1

[不等式] $|1+z|^4 \leq 1+4 \operatorname{Re} z+8|z|^2+3|z|^4$

[Copy link]

3152

Threads

8505

Posts

610K

Credits

Credits
66261
QQ

Show all posts

hbghlyj Posted at 2024-9-14 23:48:54 |Read mode
Last edited by hbghlyj at 2024-9-15 06:54:00 $type 33225230.pdf (1 MB, Downloads: 34) $z\inC,$
\begin{aligned}
& |1+z|^4 \geq 1+4 \operatorname{Re} z+|z|^2+\frac{1}{5}|z|^4 \\
& |1+z|^4 \leq 1+4 \operatorname{Re} z+8|z|^2+3|z|^4
\end{aligned}

1

Threads

113

Posts

1819

Credits

Credits
1819

Show all posts

Aluminiumor Posted at 2024-9-15 02:45:48
Last edited by Aluminiumor at 2024-9-15 12:25:00令 $z=a+bi,a,b\in\mathbb{R}$
式一即
$$[(a+1)^2+b^2]^2\geq1+4a+a^2+b^2+\frac15(a^2+b^2)^2$$
$$\Longleftrightarrow \frac45\left(a^2+b^2+\frac52a\right)^2+b^2\geq0$$
式二即
$$[(a+1)^2+b^2]^2\leq1+4a+8(a^2+b^2)+3(a^2+b^2)^2$$
$$\Longleftrightarrow 2\left(a^2+b^2-a\right)^2+6b^2\geq0$$

手机版Mobile version|Leisure Math Forum

2025-4-23 03:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list