Forgot password?
 Register account
View 2704|Reply 11

[几何] 可以作一个三角形,它的边平行并且等于已知三角形的中线

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2013-8-22 21:38 |Read mode
求证:可以作一个三角形,它的边平行并且等于已知三角形的中线。

如图,即证$AE,BF,CD$可构成三角形,追问,若$\triangle ABC$的面积为1,则此三角形的面积为多少?
snap.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2013-8-22 21:42
构成的三角形的中线跟原三角形的三边也有关系。
这个问题的结论就是三角形几何不等式里的“中线对偶定理”的依据了……

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2013-8-22 21:45

1

Threads

22

Posts

319

Credits

Credits
319

Show all posts

地狱的死灵 Posted 2013-8-23 00:24
Last edited by 地狱的死灵 2013-8-23 13:00面积也用向量积玩一下(以下运算都是向量):
4AE×BF
=(2AE)×(2BF)
=(AB+AC)×(BC+BA)
=AB×BC+AC×BC+AB×BA+AC×BA
=3AB×BC
即中线三角形面积是原三角形面积的3/4。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2013-8-23 14:32
把图直接帖来:



楼上理应加绝对值就,完美了,若直接用LaTeX代码就更美的,向量即"$\$\vv {AB}\$$"(打引号部分,发帖后即$\vv {AB}$)。




同样的,而,三中线构成三角形,用向量看,是显然的:

$2(\vv{AE}+\vv {BF}+ \vv {CD})=\vv {AB}+\vv{AC}+\vv{BA}+\vv{BC}+\vv{CA}+\vv{CB}=\vv 0$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-17 06:33
isee 发表于 2013-8-23 07:32
把图直接帖来:


图加载不出来http://www.aoshoo.com/bbs1/UploadFile/2010-1/20101311143685894.jpg

HTTP Error 404.0 - Not Found
The resource you are looking for has been removed, had its name changed, or is temporarily unavailable.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-17 17:30
补一个图

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-17 17:39
kuing 发表于 2013-8-22 14:42
构成的三角形的中线跟原三角形的三边也有关系。
这个问题的结论就是三角形几何不等式里的“中线对偶定理” ...
这份资料第629页的题Triangle inequalities: medians and sides用到了“中线对偶定理”

SIAM Rev., 21(1979) 559.
Problem 79-19, A Triangle Inequality, by M. S. KLAmKIN (University of Alberta).
If $a_1, a_2, a_3$ and $m_1, m_2, m_3$ denote the sides and corresponding medians of a triangle, respectively, prove that
$$
\left(a_1^2+a_2^2+a_3^2\right)\left(a_1 m_1+a_2 m_2+a_3 m_3\right) \geq 4 m_1 m_2 m_3\left(a_1+a_2+a_3\right)
$$
SIAM Rev., 22(1980) 509-511.
Solution by the proposer.
To prove (1) as well as to give a dual inequality, we will use the known duality theorem that
$$
F\left(a_1, a_2, a_3, m_1, m_2, m_3\right) \geq 0 \Leftrightarrow F\left(m_1, m_2, m_3, \frac{3 a_1}{4}, \frac{3 a_2}{4}, \frac{3 a_3}{4}\right) \geq 0
$$
This follows immediately from the fact that the three medians $m_1, m_2, m_3$ of any triangle are themselves sides of a triangle with respective medians $3 a_1 / 4,3 a_2 / 4,3 a_3 / 4$. For a more general duality result, see [1].
We will now prove successively that
$$
\sum a_1^2 \sum a_1 m_1 \geq \sum a_1 \sum a_1^2 m_1 \geq 4 m_1 m_2 m_3 \sum a_1
$$
where the summations are to be understood as cyclic sums over the indices $1,2,3$. The right-hand inequality of (3) follows immediately from the known inequality
$$
a_1^2 m_1+a_2^2 m_2+a_3^2 m_3 \geq 4 m_1 m_2 m_3
$$
which was obtained by Bager [2] by first establishing its dual, i.e.,
$$
4\left\{a_1 m_1^2+a_2 m_2^2+a_3 m_3^2\right\} \geq 9 a_1 a_2 a_3
$$
However, if we make the substitutions
$$
4 m_1^2=2 a_2^2+2 a_3^2-a_1^2, \text { etc. }
$$
we obtain
$$
2 \sum a_1 \sum a_1^2 \geq 3\left\{3 a_1 a_2 a_3+\sum a_1^3\right\}
$$
which was obtained by Colins in 1870 [3, p.13].

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-17 17:42
kuing 发表于 2013-8-22 14:42
构成的三角形的中线跟原三角形的三边也有关系。
这个问题的结论就是三角形几何不等式里的“中线对偶定理” ...
这份资料第4页也用到“中线对偶定理”
Via the median - duality transforming an arbitrary triangle $A_1 A_2 A_3$ into one formed by its medians ([3, pp.109 - 111]), inequality (13) becomes
$$\tag{14}
\left(\frac{h_1}{\sqrt{m_2 m_3}}\right)^t+\left(\frac{h_2}{\sqrt{m_3 m_1}}\right)^t+\left(\frac{h_3}{\sqrt{m_1 m_2}}\right)^t \leq 3 .
$$
Finally, in (12), we put $\lambda_i=\frac{1}{a_i^t}$ for $i=1,2,3$. A short calculation gives
$$\tag{15}
3\left(\frac{R}{F}\right)^{\frac{t}{2}} \geq \sum_{i=1}^3\left(\frac{\sqrt{a_i}}{m_i}\right)^t
$$
Here, we make use of the identity $a_1 a_2 a_3=4 R F$, where $F$ denotes the area of $A_1 A_2 A_3$
The median - dual of this inequality in turn reads
$$\tag{16}
\sum_{i=1}^3\left(\frac{\sqrt{m_i}}{a_i}\right)^t \leq 3\left(\frac{\sqrt{m_1 m_2 m_3}}{2 F}\right)^t
$$
Of course, if in (12) had we put $\lambda_i=\frac{\mu_i}{a_i^t}$ with $\mu_i>0, i=1,2,3$, we would obtain an even more general but less elegant inequality.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-17 17:55
kuing 发表于 2013-8-22 14:42
构成的三角形的中线跟原三角形的三边也有关系。
这个问题的结论就是三角形几何不等式里的“中线对偶定理” ...
这份资料第218页也用到“中线对偶定理”
$type Mathematics Magazine , Sep., 1976, Vol. 49, No. 4 (Sep., 1976), pp. 211-218.pdf (606.6 KB, Downloads: 46)
Q638. Let $a, b$, and $c$ denote the sides of an arbitrary triangle with respective medians $m_a, m_b$, and $m_c$. Determine all integral $p$ and $q$ so that
$$
\left(\frac{\sqrt{3}}{2}\right)^p\left(a^p m_a^q+b^p m_b^q+c^p m_c^q\right) \geqq\left(\frac{\sqrt{3}}{2}\right)^q\left(a^q m_a^p+b^q m_b^p+c^q m_c^p\right) .
$$
[Murray S. Klamkin, University of Waterloo.]

Q638. It is known that the medians $m_a, m_b, m_c$ form a triangle with respective medians $3 a / 4,3 b / 4$, $3 c / 4$. Consequently for any side-median inequality in the terms $a, b, c, m_a, m_b, m_c$ we have a dual median-side inequality in the terms $m_a, m_b, m_c, 3 a / 4,3 b / 4,3 c / 4$. Dualizing the inequality of the problem merely reverses the inequality sign, producing equality. Only $p=q$ yields this identity. (Note that $p$ and $q$ need not be integers.)


使用GhostScript去除该PDF的文字层时出现问题:
>D:\gs9.54.0\bin\gswin32c.exe -o noTXT.pdf   -sDEVICE=pdfwrite -dFILTERTEXT  "Mathematics Magazine , Sep., 1976, Vol. 49, No. 4 (Sep., 1976), pp. 211-218.pdf"
GPL Ghostscript 9.54.0 (2021-03-30)
Copyright (C) 2021 Artifex Software, Inc.  All rights reserved.
This software is supplied under the GNU AGPLv3 and comes with NO WARRANTY:
see the file COPYING for details.
   **** Warning:  File has an invalid xref entry:  2.  Rebuilding xref table.
Processing pages 1 through 8.
Page 1
Loading NimbusRoman-Regular font from %rom%Resource/Font/NimbusRoman-Regular... 4575652 3186996 4305812 2903830 4 done.
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8

   **** This file had errors that were repaired or ignored.
   **** The file was produced by:
   **** >>>> itext-paulo-155 (itextpdf.sf.net-lowagie.com) <<<<
   **** Please notify the author of the software that produced this
   **** file that it does not conform to Adobe's published PDF
   **** specification.
产生的PDF(607kB)比原PDF(492kB)大, 但是看上去一样

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-17 18:05
kuing 发表于 2013-8-22 14:42
构成的三角形的中线跟原三角形的三边也有关系。
这个问题的结论就是三角形几何不等式里的“中线对偶定理” ...
Triangle inequalities from the triangle inequality, Klamkin, M.S. Elemente der Mathematik第54页也用到“中线对偶定理”
\begin{array}l\left(a_1^3 M_1, a_2^3 M_2, a_3^3 M_3\right) &\text{form a triangle.}
\\\left(a_1 M_1^3, a_2 M_2^3, a_3 M_3^3\right) &\text{form a triangle.}\end{array}The latter two inequalities are duals, i.e., if $\mathrm{F}\left(a_1, a_2, a_3, M_1, M_2, M_3\right) \geq 0$ is a valid inequality, so is $\mathrm{F}\left(M_1, M_2, M_3, 3 / 4 a_1, 3 / 4 a_2, 3 / 4 a_3\right) \geq 0$.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-17 18:45
isee 发表于 2013-8-23 07:32
$2(\vv{AE}+\vv {BF}+ \vv {CD})=\vv {AB}+\vv{AC}+\vv{BA}+\vv{BC}+\vv{CA}+\vv{CB}=\vv 0$
按这样也可以证明“若$D,E,F$为$BC,CA,AB$的$k:1$分点, 则$AD,BE,CF$构成三角形”吧
$\vv{AD}+\vv {BE}+ \vv {CF}\begin{aligned}[t]&=(1-k)\vv {AB}+k\vv{AC}\\&+(1-k)\vv {BC}+k\vv{BA}\\&+(1-k)\vv {CA}+k\vv{CB}=(1-2k)\vv {AB}+(1-2k)\vv{BC}+(1-2k)\vv{CA}=\vv 0\end{aligned}$

Mobile version|Discuz Math Forum

2025-5-31 10:45 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit