Forgot password?
 Register account
View 111|Reply 0

[几何] $S^2$上的任意点$p$的原像$h^{-1}(p)$是$S^3$中的圆

[Copy link]

3158

Threads

7933

Posts

45

Reputation

Show all posts

hbghlyj posted 2024-10-18 23:27 |Read mode
$$S^n=\Set{x \inR^{n+1} |x_1^2+x_2^2+\cdots+x_n^2+x_{n+1}^2=1}\subset\Bbb R^{n+1}$$其中 $x=\left(x_1, x_2, \cdots, x_n, x_{n+1}\right) \inR^{n+1}$.

設 $h: S^3 \rightarrow S^2$,$$h(a, b, c, d)=(2(a c+b d), 2(b c-a d), a^2+b^2-c^2-d^2)$$其中 $a^2+b^2+c^2+d^2=1$.
如何证明“对于$S^2$上的任意点$p$,它的原像$h^{-1}(p)$是$S^3$中的圆”?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 06:36 GMT+8

Powered by Discuz!

Processed in 0.013908 second(s), 21 queries

× Quick Reply To Top Edit