Forgot password?
 Create new account
View 126|Reply 1

[不等式] 2024年北大金秋营第2题

[Copy link]

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

lemondian Posted at 2024-10-21 10:52:48 |Read mode
设实数$a>b>c$,求证:$|\dfrac{(a-b)(b-c)(1-ab-bc-ca)}{(a-c)(1+a^2)(1+b^2)(1+c^2)}|\leqslant \dfrac{1}{4}$

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2024-10-21 15:18:05
看着很难,其实很弱。
由均值有
\[0<(a-b)(b-c)\leqslant\left(\frac{a-b+b-c}2\right)^2=\frac14(a-c)^2,\quad(1)\]
再由用过很多次的恒等式 `(1+a^2)(1+b^2)(1+c^2)=(a+b+c-abc)^2+(ab+bc+ca-1)^2` 得
\[\abs{ab+bc+ca-1}\leqslant\sqrt{(1+a^2)(1+b^2)(1+c^2)},\quad(2)\]
最后再由柯西有
\[0<a-c\leqslant\sqrt{(a^2+1)\bigl(1+(-c)^2\bigr)}\leqslant\sqrt{(1+a^2)(1+b^2)(1+c^2)},\quad(3)\]
将 (1), (2), (3) 三式相乘即得
\[(a-b)(b-c)\abs{ab+bc+ca-1}\leqslant\frac14(a-c)(1+a^2)(1+b^2)(1+c^2),\]
即得证。

手机版Mobile version|Leisure Math Forum

2025-4-22 06:36 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list