Forgot password
 Register account
View 248|Reply 2

[不等式] 4个数的差的乘积<0

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-11-8 16:57 |Read mode
Untitled.png
$a,b,c,d,e$为不同的实数。
\begin{align*}(a-b) (e-a) (b-c) (c-e)<0,\\(a-c) (e-a) (c-d) (d-e)<0,\\\text{求证:}(a-b) (e-a) (b-d) (d-e)<0.\end{align*}

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-11-8 17:52
已发至 MSE

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2024-11-10 16:17
设$a-b=w,a-c=x,a-d=y,a-e=z$,$w,x,y,z$都不为零且两两不等.
问题化为:
已知:$wz(x-w)(x-z)<0,xz(y-x)(y-z)<0$,求证:$wz(y-w)(y-z)<0$.
(w,x,y,z画在数轴上,会更形象些)
证:1.当$wz>0$时,可得$(x-w)(x-z)<0$,说明$x$介于$w,z$之间,也有$xz>0$,可得$(y-x)(y-z)<0$,即$y$介于$x,z$之间,即得$y$介于$w,z$之间,所以$wz(y-w)(y-z)<0$.
2.当$wz<0$时,可得$(x-w)(x-z)>0$,即$x$落在$w,z$之外
-----     2.1.1w<0,z>0,x<w<0<z,此时xz<0,可得(y-x)(y-z)>0,即y在x,z外,可得y在w,z外,即(y-z)(y-w)>0.
-----2.1.2w<0,z>0,w<0<z<x,此时xz>0,可得(y-x)(y-z)<0,即y在z,x之间,可得可得y在w,z外,即(y-z)(y-w)>0.
2.2.1w>0,z<0,估计也类似吧,如果1楼已经编程检验过.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:30 GMT+8

Powered by Discuz!

Processed in 0.012944 seconds, 27 queries