|
Last edited by tommywong 2024-11-14 19:035.
$(a,n)=1\implies (a,6t+1)=(a,12t+1)=(a,18t+1)=1$
$a^{36t}\equiv a^{6t}\equiv 1\pmod{6t+1}$
$a^{36t}\equiv a^{12t}\equiv 1\pmod{12t+1}$
$a^{36t}\equiv a^{18t}\equiv 1\pmod{18t+1}$
$a^{36t}\equiv 1\pmod{n}$
$a^{n-1}\equiv a^{1296t^3+396t^2+36t}\equiv 1\pmod{n}$
6.
$\color{red}{r^2 \in\{-1,0,1\}\pmod{5}}$
$\color{red}{r^{10} \in\{-1,0,1\}\pmod{5}}$
$\color{green}{r\in\{-2,-1,0,1,2\}}$
$\color{green}{r^{10}\in\{0,1,2^{10}\}\pmod{25}}$
$\color{green}{2^{10}\equiv 1024\equiv -1\pmod{25}}$
$\color{green}{r^{10}\in\{-1,0,1\}\pmod{25}}$
Let $x=5q+r$
$\displaystyle x^{10}\equiv (5q+r)^{10}\equiv \sum_{k=0}^{10}\binom{10}{k}(5q)^{10-k}r^k$
$\equiv r^{10}\in\{-1,0,1\}\pmod{25}$
7.
$\displaystyle \sum_{k=0}^{N-1}10^k a_k+\sum_{k=0}^{N-1}10^{N-1-k} a_k
\equiv\sum_{k=0}^{N-1}(-1)^k(1+(-1)^{N-1})a_k$
$\equiv\begin{cases} 0\pmod{11} & N\equiv 0\pmod{2}\\
\displaystyle 2\sum_{k=0}^{N-1}10^ka_k\pmod{11} & N\equiv 1\pmod{2}\end{cases}$
N是偶數時總是得到11的倍數。
如果N是奇數,當且僅當N位數是11的倍數時得到11的倍數。
不想做8,9,10了 |
|