Forgot password?
 Register account
View 232|Reply 1

[几何] 圆内接四边形的九点二次曲线为等轴双曲线

[Copy link]

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2024-11-19 07:24 |Read mode
Last edited by hbghlyj 2024-12-30 18:42A,B,C,D的九点二次曲线为“经过A,B,C,D的所有二次曲线的中心的轨迹”。

问题:
若ABCD为圆内接四边形,求证A,B,C,D的九点二次曲线为等轴双曲线 D

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2024-12-31 02:47
使用@Blue的回答中的计算结果,设四点的坐标为$P = p\;(\cos\theta, \sin\theta)$, $Q = q\;(\cos\theta, -\sin\theta)$, $R = r\;(-\cos\theta, -\sin\theta)$, $S = s\;(-\cos\theta,\sin\theta )$则九点二次曲线为
\begin{align*}
0 \quad=\quad &\phantom{2} x^2 ( p r - q s )\sin^2\theta \\
+\; &\phantom{2} y^2 ( p r - q s ) \cos^2\theta \\
-\; &2 x y ( p r + q s ) \sin\theta \cos\theta \\
+\; &\phantom{2} x ( (p-r) qs - pr(q-s) ) \sin^2\theta \cos\theta  \\
+\; &\phantom{2} y ( (p-r) qs + pr(q-s) ) \sin\theta \cos^2\theta  
\end{align*}
为了证明该二次曲线为等轴双曲线,需要$x^2$和$y^2$项的系数之和为0,即$$pr=qs$$根据$p,q,r,s$的定义$p=|OP|,\ldots$ 所以这等价于$PQRS$共圆。

Mobile version|Discuz Math Forum

2025-6-6 02:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit