Forgot password?
 Register account
View 256|Reply 4

[不等式] 一道有限制条件的五元不等式

[Copy link]

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

lemondian Posted 2024-11-19 16:40 |Read mode
设$a,b,c,d,e$是非负实数,且$a+b+c+d+e=5$,证明:$(1+a^2)(1+b^2)(1+c^2)(1+d^2)(1+e^2)\geqslant (1+a)(1+b)(1+c)(1+d) (1+e)$

411

Threads

1634

Posts

110K

Credits

Credits
11888

Show all posts

abababa Posted 2024-11-19 20:02
这能不能用对数函数,然后用琴生不等式?先两边取对数,只要证明$\sum_{a,b,c,d,e}\ln(1+a^2)\ge\sum_{a,b,c,d,e}\ln(1+a)$,然后令$f(x)=\ln(1+x^2)-\ln(1+x)$,只要证明$f(x)$是凸函数,再用琴生不等式就有$\frac{1}{5}\sum_{x=a,b,c,d,e}f(x)\ge f(\frac{a+b+c+d+e}{5})=f(1)=0$,就出来了。

Comment

就是不凸  Posted 2024-11-19 20:28
x=1处的切线也不恒在下方  Posted 2024-11-19 20:41
原来如此,果然我不等式不行。😓  Posted 2024-11-20 18:36

Mobile version|Discuz Math Forum

2025-6-6 02:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit