Forgot password?
 Create new account
View 129|Reply 2

[概率/统计] 请教一道代数最值的概率题

[Copy link]

48

Threads

47

Posts

685

Credits

Credits
685

Show all posts

snowblink Posted at 2024-11-22 12:42:42 |Read mode
已知$T=\left \{ \left ( x_{1},x_{2},\cdots ,x_{n}  \right )| x_{i}=0 \text{或} 1,i=1,2,\cdots ,n \right \} $,定义$\vec{a} + \vec{b} = \left ( a_{1} + b_{1} ,a_{2} + b_{2} ,\cdots ,a_{n} + b_{n}\right ) $,$\vec{a} - \vec{b} = \left ( a_{1} - b_{1} ,a_{2} - b_{2} ,\cdots ,a_{n} - b_{n}\right ) $,$\left | \vec{a}  \right | =\sum_{i=1}^{n} \left | a_{i}  \right |$,随机从$T$中抽取$\vec{a},\vec{b}$(可相同),则$\left |\vec{a} - \vec{b}  \right |+\left |\vec{a} + \vec{b}  \right |$取到最大值的概率为?
答案为$\left ( \dfrac{3}{4}  \right ) ^{n} $

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2024-11-22 15:28:23
易证对任意 `x`, `y\inR` 有 `\abs{x-y}+\abs{x+y}=2\max\{\abs x,\abs y\}`,依题设定义,有
\[\bigl|\vec a-\vec b\bigr|+\bigl|\vec a+\vec b\bigr|=\sum_{i=1}^n(\abs{a_i-b_i}+\abs{a_i+b_i})=2\sum_{i=1}^n\max\{\abs{a_i},\abs{b_i}\},\]
因此,要取到最大值,必须确保对于每个 `i`,都有 `a_i`, `b_i` 至少一个是 `1`,此概率是 `3/4`,现在 `i` 由 `1` 取到 `n`,则乘法原理,答案自然就是 `(3/4)^n`。

Comment

😀明白了,感谢kuing  Posted at 2024-11-22 16:49

手机版Mobile version|Leisure Math Forum

2025-4-22 03:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list