Forgot password
 Register account
View 135|Reply 4

[数论] 求证不存在整数$a$使得$a^2+3a+5\equiv0\pmod{121}$

[Copy link]

68

Threads

405

Posts

3

Reputation

Show all posts

Tesla35 posted 2024-11-25 17:33 |Read mode
求证不存在整数$a$使得$a^2+3a+5\equiv0\pmod{121}$

3223

Threads

7841

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-11-25 17:41
没有整数 $a$ 满足 $a^{2}+3a+5\equiv0 \pmod {121}$
证明.
$a^2 + 3a + 5 \equiv 0 \pmod {121}$ 等价于 $4a^2 + 12a + 20 \equiv 0 \pmod {121}$ 等价于 $(2a+3)^2+11 \equiv 0 \pmod {121}$

但是现在我们得到 $2a+3$ 被 $11$ 整除,因此 $(2a+3)^2$ 被 $121$ 整除,这与上述条件矛盾,因为 $11$ 不能被 $121$ 整除。证毕!

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2024-11-25 17:46
令$a=11p+q$,其中$q=0,1,...,10$

那么
\[a^2+3a+5=121p^2+22pq+33p+q^2+3q+5\]
你这玩意要想整除$121$,首先得能整除$11$,那么就要求
\[(q^2+3q+5) \mod 11 =0\]
在$q=0,1,2,...,10$里面,只有$q=4$可以,那就有
\[a^2+3a+5=121p^2+121p+33\]
当然就别想整除$121$了

Comment

懂了。{:handshake:}  posted 2024-11-25 18:34

68

Threads

405

Posts

3

Reputation

Show all posts

original poster Tesla35 posted 2024-11-25 18:34
hbghlyj 发表于 2024-11-25 17:41
没有整数 $a$ 满足 $a^{2}+3a+5\equiv0 \pmod {121}$
证明.
$a^2 + 3a + 5 \equiv 0 \pmod {121}$ 等价于 $ ...
懂了。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-22 15:22 GMT+8

Powered by Discuz!

Processed in 0.013345 seconds, 26 queries