Forgot password?
 Register account
View 208|Reply 7

[几何] 两单位圆两动点向量最值问题

[Copy link]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2024-11-26 11:48 |Read mode
两单位圆外切于点$P,$$ A、B $分别两圆动点,$ \vv{PA}\cdot \vv{PB} =-1$,$|\vv{PA} +\vv{PB}| $的最大值

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2024-11-26 16:40
一时想不到好方法,先剥蒜😅

设两个单位圆极坐标方程分别为:
$$r=2\cos\theta,r=2\cos(\pi-\theta)$$
换元后可设
$$PA=r_1=2\cos\alpha,PB=r_2=2\cos\beta$$
其中 $\alpha,\beta\in(-\frac\pi2,\frac\pi2)$

$$\vv{PA}\cdot \vv{PB}=2\cos\alpha\cdot2\cos\beta\cdot\cos(\pi-\alpha-\beta)=-1$$
即$$\cos\alpha\cos\beta\cos(\alpha+\beta)=\frac14$$
$$\Longleftrightarrow\left[\cos(\alpha-\beta)+\cos(\alpha+\beta)\right]\cos(\alpha+\beta)=\frac12$$
$$\cos(\alpha+\beta)[\cos(\alpha+\beta)+1]\geq\frac12\Longrightarrow\cos(\alpha+\beta)\geq\frac{\sqrt{3}-1}{2}$$
$$\begin{align*}
|\vv{PA} +\vv{PB}|^2
&=|\vv{PA}|^2+|\vv{PB}|^2+2\vv{PA}\cdot \vv{PB}\\
&=4\left(\cos^2\alpha+\cos^2\beta\right)-2\\
&=2\cos2\alpha+2\cos2\beta+2\\
&=4\cos(\alpha+\beta)\cos(\alpha-\beta)+2\\
&=4-4\cos^2(\alpha+\beta)\\
&\leq2\sqrt{3}
\end{align*}$$
验证可取等。故 $|\vv{PA} +\vv{PB}|_{\max}=\sqrt[4]{12}$
Wir müssen wissen, wir werden wissen.

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2024-11-26 20:43
延长 `AP` 交另一圆于 `C`,则 `\vv{PC}=-\vv{PA}`,于是问题变成:

单位圆上的内接 `\triangle PBC` 满足 `\vv{PC}\cdot\vv{PB}=1`,求 `BC` 的最大值。

由正弦定理及积化和差有
\begin{align*}
1&=PC\cdot PB\cdot\cos P\\
&=2\sin B\cdot2\sin C\cdot\cos P\\
&=2\bigl(\cos(B-C)-\cos(B+C)\bigr)\cos P\\
&=2\cos(B-C)\cos P+2\cos^2P\\
&\leqslant2\cos P+2\cos^2P
\end{align*}
解得
\[\cos P\geqslant\frac{\sqrt3-1}2,\]
所以
\[BC=2\sin P\leqslant2\sqrt{1-\left(\frac{\sqrt3-1}2\right)^2}=\sqrt{2\sqrt3}=\sqrt[4]{12}.\]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2024-11-27 08:03
感谢两位解答。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2024-11-27 08:16
1.$ P $ 为原点建系。圆参数方程。A($ \cos \alpha  $-1,$ \sin \alpha  $),B($ \cos \beta  +1,\sin \beta $),$ \vv{PA} \cdot \vv{PB}=-1,\cos (\alpha -\beta )=\cos \beta -\cos \alpha =-2\sin \dfrac{\alpha +\beta }{2} \sin \dfrac{\beta -\alpha }{2},|\vv{\vv{PA}}+\vv{PB}|=\sqrt{4-4\sin \dfrac{\beta -\alpha }{2}}$,

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2024-11-27 09:10
Last edited by 敬畏数学 2024-11-27 10:51
kuing 发表于 2024-11-26 20:43
延长 `AP` 交另一圆于 `C`,则 `\vv{PC}=-\vv{PA}`,于是问题变成:

单位圆上的内接 `\triangle PBC` 满足 ...
$  $$ \vv{PB}\cdot \vv{PC} =\dfrac{(\vv{PB}+\vv{PC})^2-(\vv{PB}-\vv{PC})^2}{4}=\dfrac{PM^2-(\vv{PB}-\vv{PC})^2}{4}$,中线公式,$ OP^2+OM^2=2(ON^2+OP^2),OB^2+OC^2 =2(ON^2+OC^2)$,$ OM^2=2(OP^2-OC^2)+1=2\vv{PB} \cdot \vv{PC}+1$
套路,类比矩形大法啊,得平行四边形大法。$ OB^2+ OC^2=OP^2+OM^2+2\vv{BP}\cdot \vv{BM}$,$ OP^2+ OM^2=OB^2+OC^2+2\vv{PB}\cdot \vv{PC}$,
$ OB^2+ OC^2=OP^2+OM^2+2\vv{CP}\cdot \vv{CM}$,
$OP^2+OM^2=OB^2+OC^2+2\vv{MB}\cdot \vv{MC}$,

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2024-11-27 10:35
敬畏数学 发表于 2024-11-27 09:10
$ \vv{PB}\cdot \vv{PC} =\dfrac{(\vv{PB}+\vv{PC})^2+(\vv{PB}-\vv{PC})^2}{4}=\dfrac{PM^2+(\vv{PB}-\vv{PC})^2}{4}$, ...
第一行的分子应该是减吧?
后面的 M 和 N 是什么点?

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2024-11-27 10:53
kuing 发表于 2024-11-27 10:35
第一行的分子应该是减吧?
后面的 M 和 N 是什么点?
谢谢指正。M平行四边形的第四顶点。N为对角线交点。

Mobile version|Discuz Math Forum

2025-6-6 12:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit