Forgot password?
 Register account
View 256|Reply 2

[不等式] 不用导数,如何求解呢?

[Copy link]
人间风雪客 posted 2024-11-27 13:15 From mobile phone |Read mode
请大神写一下过程,感谢🙏。
1C40439E-CAED-48BB-98DC-5A9D1997415B.jpeg

682

Threads

110K

Posts

206

Reputation

Show all posts

kuing posted 2024-11-27 14:00
Last edited by kuing 2024-11-27 14:29记 `t=\sqrt[3]{bcd}`,则 `a=1/t^3`,由均值有 `b+c+d\geqslant3t` 及 `bc+bd+cd\geqslant3t^2`,所以
\[\text{原式}\geqslant\frac1{t^6}+\frac3{t^2}+3t^2,\]
再令 `1/t^2=x`,就变成求
\[f(x)=x^3+3x+\frac3x,\quad(x>0)\]
的最小值,然后……emmm...还是求导最好……😅

非要绕过导数,那就待定系数均值,设 `k>0`,则
\begin{align*}
f(x)&=x^3+k^3+k^3+3x+\frac3x-2k^3\\
&\geqslant3(k^2+1)x+\frac3x-2k^3\\
&\geqslant6\sqrt{k^2+1}-2k^3,
\end{align*}
两次取等分别为 `x=k` 和 `(k^2+1)x=1/x`,也就是 `k^2(k^2+1)=1`,解得
\[k^2=\frac{\sqrt5-1}2,\]
下略。

Comment

厉害,感谢解答  posted 2024-12-1 12:44

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 06:51 GMT+8

Powered by Discuz!

Processed in 0.048386 second(s), 26 queries

× Quick Reply To Top Edit