Forgot password
 Register account
View 168|Reply 2

[几何] 椭圆结论$\frac{1}{OP^2}+\frac{1}{OQ^2}$等于定值的代数证明

[Copy link]

132

Threads

251

Posts

1

Reputation

Show all posts

郝酒 posted 2024-11-28 22:53 |Read mode
RT,椭圆上两点$P,Q$满足$OP\bot OQ$,则$\frac{1}{OP^2}+\frac{1}{OQ^2}=\frac{1}{a^2}+\frac{1}{b^2}$,用中心是极点的极坐标可以很容易证明,代数上有没有好的看的方式呢?感觉应该是等价的,卡住了.
即$\frac{x_1^2}{a^2}+\frac{y_1^2}{b^2}=1,\frac{x_2^2}{a^2}+\frac{y_2^2}{b^2}=1,x_1x_2+y_1y_2=0$,求证$\frac{1}{x_1^2+y_1^2}+\frac{1}{x_2^2+y_2^2}=\frac{1}{a^2}+\frac{1}{b^2}$.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-11-29 01:24
只需证明如下命题:若
\[\led
am+bn&=1,&(1)\\
ap+bq&=1,&(2)\\
mp&=nq,&(3)
\endled\]
则有
\[\frac1{m+n}+\frac1{p+q}=a+b.\]

证明:由式 (1), (3) 易得
\[m=\frac q{aq+bp},~n=\frac p{aq+bp},\]
所以
\[\frac1{m+n}=\frac{aq+bp}{p+q},\]
由式 (2) 得
\[\frac1{p+q}=\frac{ap+bq}{p+q},\]
所以
\[\frac1{m+n}+\frac1{p+q}=\frac{aq+bp+ap+bq}{p+q}=a+b.\]

132

Threads

251

Posts

1

Reputation

Show all posts

original poster 郝酒 posted 2024-11-29 08:14 from mobile
谢谢ku版

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 21:40 GMT+8

Powered by Discuz!

Processed in 0.013396 seconds, 22 queries