Forgot password?
 Register account
View 280|Reply 2

[几何] 四倍角

[Copy link]

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2024-12-4 22:28 |Read mode
四倍角.png
纯几何法最好,三角法也可接受

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2024-12-5 02:04
三角法:

设 $\angle BAD=\theta$. 设 $AC$ 与 $BD$ 交于点 $E$. 设 $\angle CED=\alpha,CD=2x,BC=3x$
$$\tan\alpha=\frac{AB}{BE}=\frac{5}{3\tan\theta}$$
在 $\triangle BCD$ 中
$$BD^2=(2x)^2+(3x)^2-2\cdot2x\cdot3x\cos4\theta\Longrightarrow\left(13-12\cos4\theta\right)x^2=100$$
在 $\triangle CDE$ 中
$$\frac{2x}{\sin\alpha}=\frac{4}{\sin2\theta}\Longrightarrow x^2=\frac{4\sin^2\alpha}{\sin^22\theta}=\frac{4}{\sin^22\theta}\cdot\frac{\tan^2\alpha}{1+\tan^2\alpha}$$
联立可求得
$$\left(7\tan^2\theta-1\right)\left(5\tan^2\theta+1\right)=0\Longrightarrow \tan^2\theta=\frac17$$
$$AD^2=AB^2+BD^2=\frac{10^2}{\tan^2\theta}+10^2=800\Longrightarrow AD=20\sqrt{2}$$
Wir müssen wissen, wir werden wissen.

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2024-12-5 13:38
我也来个三角法:

记 `\angle BAC=x`, `\angle BAD=y`,设 `AC` 与 `BD` 交于 `E`,则
\[\frac{\tan x}{\tan y}=\frac{BE}{BD}=\frac35,\quad(1)\]
由四倍角及平分线知 `\angle ACB=\angle ACD=2y`,由此不难计算出 `\angle CBD=90\du-x-2y`, `\angle CDB=90\du+x-2y`,于是
\[\frac23=\frac{CD}{CB}=\frac{\sin(90\du-x-2y)}{\sin(90\du+x-2y)}=\frac{\cos(x+2y)}{\cos(x-2y)}=\frac{1-\tan x\tan2y}{1+\tan x\tan2y},\]
由此得
\[\tan x\tan2y=\frac15,\]
再将式 (1) 代入,即
\[3\tan y\tan2y=1\iff\frac{6\tan^2y}{1-\tan^2y}=1\iff\tan^2y=\frac17,\]
下略。

Mobile version|Discuz Math Forum

2025-6-6 11:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit