Forgot password
 Register account
View 164|Reply 2

[函数] 求方程$8x^3-4x^2-4x+1=0$的实数根(结果用三角表示)

[Copy link]

423

Threads

909

Posts

0

Reputation

Show all posts

lemondian posted 2024-12-5 17:01 |Read mode
求方程$8x^3-4x^2-4x+1=0$的实数根(结果用三角表示)

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-12-5 17:16

\[x_k=\cos\frac{2k\pi}7+i\sin\frac{2k\pi}7,\]
则 `x^7=1` 的七根为 `x_0` 至 `x_6`,而 `x^7-1=(x-1)(x^6+x^5+\cdots+1)`,所以 `x^6+x^5+\cdots+1=0` 的六根为 `x_1` 至 `x_6`,将此方程配方为
\[\left( x+\frac1x \right)^3+\left( x+\frac1x \right)^2-2\left( x+\frac1x \right)-1=0,\]
由于
\[x_k+\frac1{x_k}=2\cos\frac{2k\pi}7,\]
所以方程 `t^3+t^2-2t-1=0` 的三根为 `2\cos(2\pi/7)`, `2\cos(4\pi/7)`, `2\cos(6\pi/7)`。

再作变换 `t\to-2t` 即得 `-8t^3+4t^2+4t-1=0` 的三根为 `\cos(5\pi/7)`, `\cos(3\pi/7)`, `\cos(\pi/7)`。

(直接复制自 forum.php?mod=viewthread&tid=8917#pid44886 的 7# 只字未改)

Comment

老想在哪见过,原来是自已也问过相应的题目呀!  posted 2024-12-5 20:10

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 08:12 GMT+8

Powered by Discuz!

Processed in 0.011894 seconds, 23 queries