Forgot password?
 Create new account
View 145|Reply 2

[函数] 求方程$8x^3-4x^2-4x+1=0$的实数根(结果用三角表示)

[Copy link]

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

lemondian Posted at 2024-12-5 17:01:06 |Read mode
求方程$8x^3-4x^2-4x+1=0$的实数根(结果用三角表示)

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2024-12-5 17:16:50

\[x_k=\cos\frac{2k\pi}7+i\sin\frac{2k\pi}7,\]
则 `x^7=1` 的七根为 `x_0` 至 `x_6`,而 `x^7-1=(x-1)(x^6+x^5+\cdots+1)`,所以 `x^6+x^5+\cdots+1=0` 的六根为 `x_1` 至 `x_6`,将此方程配方为
\[\left( x+\frac1x \right)^3+\left( x+\frac1x \right)^2-2\left( x+\frac1x \right)-1=0,\]
由于
\[x_k+\frac1{x_k}=2\cos\frac{2k\pi}7,\]
所以方程 `t^3+t^2-2t-1=0` 的三根为 `2\cos(2\pi/7)`, `2\cos(4\pi/7)`, `2\cos(6\pi/7)`。

再作变换 `t\to-2t` 即得 `-8t^3+4t^2+4t-1=0` 的三根为 `\cos(5\pi/7)`, `\cos(3\pi/7)`, `\cos(\pi/7)`。

(直接复制自 kuing.cjhb.site/forum.php?mod=viewthread& … &page=1#pid44886 的 7# 只字未改)

Comment

老想在哪见过,原来是自已也问过相应的题目呀!  Posted at 2024-12-5 20:10

手机版Mobile version|Leisure Math Forum

2025-4-21 22:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list