Forgot password?
 Register account
View 286|Reply 7

[函数] 一道高一学生的极值问题

[Copy link]

126

Threads

430

Posts

1

Reputation

Show all posts

TSC999 posted 2024-12-8 18:50 |Read mode
求 a 值.png

上面是用求导数的一般方法解答问题。问,有没有更简单的方法做此题?

0

Threads

412

Posts

6

Reputation

Show all posts

爪机专用 posted 2024-12-8 19:18
\[ f=\frac{2\sqrt{a(x-a)}}{2\sqrt{a}x}\leqslant \frac{a+(x-a)}{2\sqrt{a}x}=\frac1{2\sqrt{a}}\riff a=\frac14\]
I am majia of kuing

126

Threads

430

Posts

1

Reputation

Show all posts

original poster TSC999 posted 2024-12-8 19:52
谢谢 爪机专用 的解答。这个用均值定理的方法最简单。

279

Threads

547

Posts

2

Reputation

Show all posts

力工 posted 2024-12-9 07:54
TSC999 发表于 2024-12-8 19:52
谢谢 爪机专用 的解答。这个用均值定理的方法最简单。
没有k版这么高的眼界,我脚得可以化二次,
$f(x)$最大,必有$x>0,a>0$,则$f(x)=\sqrt{-a(\frac{1}{x}-\frac{1}{2a})^2+\frac{1}{4a}}\leqslant \frac{1}{\sqrt{4a}}$

209

Threads

950

Posts

2

Reputation

Show all posts

敬畏数学 posted 2024-12-9 12:27 From mobile phone
设分子为t,也是很轻松的。要什么高境界吗?

209

Threads

950

Posts

2

Reputation

Show all posts

敬畏数学 posted 2024-12-9 12:28 From mobile phone
求导更夸张。

126

Threads

430

Posts

1

Reputation

Show all posts

original poster TSC999 posted 2024-12-9 16:20
又一种方法:
求 a 值一.png

Comment

其实没有必要这法那法,如果这样起来,我也可以,说是曲线$\sqrt{x-a}$上的点与原点$(0,0)$连线的斜率。  posted 2024-12-10 08:37

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 05:21 GMT+8

Powered by Discuz!

Processed in 0.027094 second(s), 27 queries

× Quick Reply To Top Edit