Forgot password?
 Create new account
View 138|Reply 5

[函数] 解方程(看不出从哪里下嘴)

[Copy link]

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2024-12-9 07:58:28 |Read mode
已知$0<a,b<2,ab=2$,解关于$x$的方程$4(x^2+ax+b)(x^2+bx+a)+a^3+b^3=9$.
顺便提一嘴:可否变为不等式问题?

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

 Author| 力工 Posted at 2024-12-9 08:07:59
初以为是代数变形,后来发现真是不等式。

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2024-12-9 10:26:39
Last edited by kuing at 2024-12-9 10:58:00
力工 发表于 2024-12-9 08:07
初以为是代数变形,后来发现真是不等式。
具体讲讲呗

另外,x 有无限制?若无限制,恐怕不等式也没法用。

Comment

恰好$\delta<0$了,设计好了,巧。  Posted at 2024-12-9 13:55

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

 Author| 力工 Posted at 2024-12-9 13:54:44
由二次式的性质:$x^2+ax+b=(x+\frac{a}{2})^2+b-\frac{a^2}{4}\geqslant \frac{8-a^3}{4a}>0$,同样,$(x^2+bx+a)\geqslant \frac{8-b^3}{4b}>0$,
所以,$LHS\geqslant \frac{(8-a^3)(8-b^3)}{4ab}+a^3+b^3=8+\frac{(ab)^3}{8}=9$.

Comment

原来如此😌  Posted at 2024-12-9 14:07

手机版Mobile version|Leisure Math Forum

2025-4-22 04:55 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list