Forgot password?
 Create new account
View 152|Reply 1

[不等式] 证明二元函数的最小值点在$xy=0$上?

[Copy link]

3151

Threads

8499

Posts

610K

Credits

Credits
66226
QQ

Show all posts

hbghlyj Posted at 2024-12-9 22:49:53 |Read mode
证明Schaffer function N. 4${\displaystyle f(x,y)=0.5+{\frac {\cos ^{2}\left[\sin \left(\left|x^{2}-y^{2}\right|\right)\right]-0.5}{\left[1+0.001\left(x^{2}+y^{2}\right)\right]^{2}}}}$只有4个全局最小值点,都在$xy=0$上?
schaffer4[1].png

3151

Threads

8499

Posts

610K

Credits

Credits
66226
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-9 22:52:56
WolframAlpha算出
download (3).gif

得出4个最小值点,都在$xy=0$上:

${\displaystyle {\text{Min}}={\begin{cases}f\left(0,1.25313\right)&=0.292579\\f\left(0,-1.25313\right)&=0.292579\\f\left(1.25313,0\right)&=0.292579\\f\left(-1.25313,0\right)&=0.292579\end{cases}}}$

如何证明它们是全局最小值点?

手机版Mobile version|Leisure Math Forum

2025-4-22 03:48 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list