Forgot password?
 Create new account
View 133|Reply 3

[几何] 线段比乘积相等

[Copy link]

3151

Threads

8499

Posts

610K

Credits

Credits
66226
QQ

Show all posts

hbghlyj Posted at 2024-12-12 01:02:45 |Read mode
Last edited by hbghlyj at 2024-12-20 18:19:00Heinrich Dörrie, Triumph der Mathematik. Hundert berühmte Probleme aus zwei Jahrtausenden mathematischer Kultur. Breslau 1933
The Cramer-Castillon problem and Urquhart’s ‘most elementary’ theorem

设点 $A,B,P,Q,R,S$ 位于图所示的4条直线上,且 $AP + P B = B R + R A$,

可推出 $AQ + QB = BS + S A$ 及 $\frac{A P}{P B} \cdot \frac{B S}{S A}=\frac{A Q}{Q B} \cdot \frac{B R}{R A}$

3151

Threads

8499

Posts

610K

Credits

Credits
66226
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-12 17:07:46
如何证明?

Comment

貌似梅捏劳斯,ARS为三边割线,转化为证SA/RA=?SP/SB?  Posted at 2024-12-21 10:47

3151

Threads

8499

Posts

610K

Credits

Credits
66226
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-24 05:09:45
力工 发表于 2024-12-21 02:47
貌似梅捏劳斯,ARS为三边割线,转化为证SA/RA=?SP/SB?
能否详细写写

手机版Mobile version|Leisure Math Forum

2025-4-22 06:38 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list