Forgot password
 Register account
View 150|Reply 3

[几何] 线段比乘积相等

[Copy link]

3222

Threads

7840

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-12-12 01:02 |Read mode
Last edited by hbghlyj 2024-12-20 18:19Heinrich Dörrie, Triumph der Mathematik. Hundert berühmte Probleme aus zwei Jahrtausenden mathematischer Kultur. Breslau 1933
The Cramer-Castillon problem and Urquhart’s ‘most elementary’ theorem

设点 $A,B,P,Q,R,S$ 位于图所示的4条直线上,且 $AP + P B = B R + R A$,

可推出 $AQ + QB = BS + S A$ 及 $\frac{A P}{P B} \cdot \frac{B S}{S A}=\frac{A Q}{Q B} \cdot \frac{B R}{R A}$

3222

Threads

7840

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-12-12 17:07
如何证明?

Comment

貌似梅捏劳斯,ARS为三边割线,转化为证SA/RA=?SP/SB?  posted 2024-12-21 10:47

3222

Threads

7840

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-12-24 05:09
力工 发表于 2024-12-21 02:47
貌似梅捏劳斯,ARS为三边割线,转化为证SA/RA=?SP/SB?
能否详细写写

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 16:17 GMT+8

Powered by Discuz!

Processed in 0.012946 seconds, 24 queries