Forgot password?
 Create new account
View 123|Reply 1

[考古] 19世纪的几何学

[Copy link]

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

hbghlyj Posted at 2024-12-14 21:50:08 |Read mode

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-14 21:55:41
The problem of Apollonius
Apollonius_all_solutions[1].png

The incidence of cycles in Lie sphere geometry provides a simple solution to the problem of Apollonius.[3] This problem concerns a configuration of three distinct circles (which may be points or lines): the aim is to find every other circle (including points or lines) which is tangent to all three of the original circles. For a generic configuration of circles, there are at most eight such tangent circles.

The solution, using Lie sphere geometry, proceeds as follows. Choose an orientation for each of the three circles (there are eight ways to do this, but there are only four up to reversing the orientation of all three). This defines three points [x], [y], [z] on the Lie quadric Q. By the incidence of cycles, a solution to the Apollonian problem compatible with the chosen orientations is given by a point [q] ∈ Q such that q is orthogonal to xy and z. If these three vectors are linearly dependent, then the corresponding points [x], [y], [z] lie on a line in projective space. Since a nontrivial quadratic equation has at most two solutions, this line actually lies in the Lie quadric, and any point [q] on this line defines a cycle incident with [x], [y] and [z]. Thus there are infinitely many solutions in this case.

If instead xy and z are linearly independent then the subspace V orthogonal to all three is 2-dimensional. It can have signature (2,0), (1,0), or (1,1), in which case there are zero, one or two solutions for [q] respectively. (The signature cannot be (0,1) or (0,2) because it is orthogonal to a space containing more than one null line.) In the case that the subspace has signature (1,0), the unique solution q lies in the span of xy and z.

The general solution to the Apollonian problem is obtained by reversing orientations of some of the circles, or equivalently, by considering the triples (x,ρ(y),z), (x,y,ρ(z)) and (x,ρ(y),ρ(z)).

Note that the triple (ρ(x),ρ(y),ρ(z)) yields the same solutions as (x,y,z), but with an overall reversal of orientation. Thus there are at most 8 solution circles to the Apollonian problem unless all three circles meet tangentially at a single point, when there are infinitely many solutions.

手机版Mobile version|Leisure Math Forum

2025-4-20 12:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list