Forgot password?
 Create new account
View 2105|Reply 3

[不等式] 一个看似优美的不等式链

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2013-12-7 12:21:05 |Read mode
$x\in N_+$
$\frac{1}{2^{x+2}}<\dfrac{1}{2^x+3^{-x}}-\dfrac{1}{3^x+2^{-x}}<2^{-x}-3^{-x}<\dfrac{1}{2^x-3^{-x}}-\dfrac{1}{3^x-2^{-x}}<\frac{1}{2^{x}}$

2

Threads

52

Posts

337

Credits

Credits
337

Show all posts

007 Posted at 2013-12-7 13:59:51
Last edited by 007 at 2013-12-7 14:12:00回复 1# 青青子衿


通分即可得证哦
佩服发现者

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2013-12-7 16:55:26
回复  青青子衿
通分即可得证哦
佩服发现者
007 发表于 2013-12-7 13:59

请写出详细步骤,谢谢!
这种题作差解决,怎样?

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-12-7 17:04:25
回复 1# 青青子衿
将$x$写成$n$多好啊!像是数列不等式放缩的前奏?
$\dfrac{1}{2^{n+2}}<\dfrac{1}{2^n+3^{-n}}-\dfrac{1}{3^n+2^{-n}}<2^{-n}-3^{-n}<\dfrac{1}{2^n-3^{-n}}-\dfrac{1}{3^n-2^{-n}}<\dfrac{1}{2^{n}}
$

手机版Mobile version|Leisure Math Forum

2025-4-21 19:07 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list