Forgot password
 Register account
View 2223|Reply 3

[不等式] 一个看似优美的不等式链

[Copy link]
青青子衿 posted 2013-12-7 12:21 |Read mode
$x\in N_+$
$\frac{1}{2^{x+2}}<\dfrac{1}{2^x+3^{-x}}-\dfrac{1}{3^x+2^{-x}}<2^{-x}-3^{-x}<\dfrac{1}{2^x-3^{-x}}-\dfrac{1}{3^x-2^{-x}}<\frac{1}{2^{x}}$

2

Threads

52

Posts

0

Reputation

Show all posts

007 posted 2013-12-7 13:59
Last edited by 007 2013-12-7 14:12回复 1# 青青子衿


通分即可得证哦
佩服发现者
original poster 青青子衿 posted 2013-12-7 16:55
回复  青青子衿
通分即可得证哦
佩服发现者
007 发表于 2013-12-7 13:59
请写出详细步骤,谢谢!
这种题作差解决,怎样?

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-12-7 17:04
回复 1# 青青子衿
将$x$写成$n$多好啊!像是数列不等式放缩的前奏?
$\dfrac{1}{2^{n+2}}<\dfrac{1}{2^n+3^{-n}}-\dfrac{1}{3^n+2^{-n}}<2^{-n}-3^{-n}<\dfrac{1}{2^n-3^{-n}}-\dfrac{1}{3^n-2^{-n}}<\dfrac{1}{2^{n}}
$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 11:46 GMT+8

Powered by Discuz!

Processed in 0.020673 seconds, 23 queries