Forgot password?
 Create new account
View 137|Reply 5

[函数] 三角函数 10°

[Copy link]

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

hbghlyj Posted at 2024-12-20 22:07:10 |Read mode
$\cos (\pi / 18)$ 和 $\sin (\pi / 18)$ 的精确值可以通过无限嵌套根式给出
\[
\sin \left(\frac{\pi}{18}\right)=\frac{1}{2} \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2-\ldots}}}}
\]
其中符号序列$+,+,-$以周期 3 重复,并且
\[
\cos \left(\frac{\pi}{18}\right)=\frac{1}{6} \sqrt{3}(\sqrt{8-\sqrt{8-\sqrt{8+\sqrt{8-\ldots}}}}+1)
\]
其中符号序列$-, -, +$以周期 3 重复。

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-20 22:25:56
Nest[Sqrt[2 - Sqrt[2 + Sqrt[2 + #1]]] & , 0, 4]
download.gif
Nest[Sqrt[2 - Sqrt[2 + Sqrt[2 + #1]]] & , 0, 7]
download (1).gif
ListLinePlot[NestList[Sqrt[2 - Sqrt[2 + Sqrt[2 + #1]]] & , 0, 15]]
download (2).gif
ListLinePlot[Drop[NestList[Sqrt[2 - Sqrt[2 + Sqrt[2 + #1]]] & , 0, 15], 1]]
download (5).gif
会收敛到$2\sin\frac\pi{18}$=0.34729635533386066…
证明
函数$f(x)=\sqrt{2-\sqrt{2+\sqrt{2+x}}},$
download.gif Wolfram
$\max|f'|<1$,所以$f$为contraction mapping.
Banach fixed-point theorem得出
  • $f:[0,1]\to[0,1]$ 存在唯一的不动点 $x^*$
  • 且 $f\circ\dots\circ f(x_0)\to x^*$ 对任意$x_0\in[0,1]$



求出 $f$ 的不动点 $x^*=2\sin\frac{\pi}{18}$
download (3).gif
Wolfram

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2024-12-20 23:22:08
sin10° 的以前讨论过了:kuing.cjhb.site/forum.php?mod=viewthread&tid=5138

Comment

如果 sin(6°), cos(6°) 要如何表示呢?🧐  Posted at 2024-12-21 01:23

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-21 00:54:57
hbghlyj 发表于 2024-12-20 14:07
\[\cos \left(\frac{\pi}{18}\right)=\frac{1}{6} \sqrt{3}(\sqrt{8-\sqrt{8-\sqrt{8+\sqrt{8-\ldots}}}}+1)\]
证明
$f(x)=\sqrt{8-\sqrt{8-\sqrt{8+x}}}$
download (2).gif
$\max|f'|<1$,所以$f$为contraction mapping.
Banach fixed-point theorem 得出
  • $f:[2,3]\to[2,3]$ 存在唯一的不动点 $x^*$
  • 且 $f\circ\dots\circ f(x_0)\to x^*$ 对任意$x_0\in[2,3]$



求出 $f$ 的不动点 $x^*=2 \sqrt{3} \cos \left(\frac{\pi}{18}\right)-1$
download (3).gif
Wolfram

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-21 01:18:03
sin(6°), cos(6°) 是否可以通过有理数的无限循环嵌套根式给出

手机版Mobile version|Leisure Math Forum

2025-4-21 22:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list