Forgot password?
 Create new account
View 165|Reply 5

[不等式] 非钝角三角形中一个不等关系

[Copy link]

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

lemondian Posted at 2024-12-23 08:43:19 |Read mode
非钝角三角形中是否有$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\geqslant \dfrac{\sqrt{2}+\frac{1}2}{\sqrt{S}}$

4

Threads

57

Posts

754

Credits

Credits
754

Show all posts

ljh25252 Posted at 2024-12-23 19:31:44
Last edited by ljh25252 at 2024-12-25 19:53:00对于

$$
\begin{aligned} &\frac{1}{a^{2k}}+\frac{1}{b^{2k}}+\frac{1}{c^{2k}}\geq\frac{2^{1-k}+\frac{1}{2^{2k}}}{S^k}\\ \Leftrightarrow &\sum\frac{S^k}{a^{2k}}=\sum\left(\frac{S}{a^2}\right)^k=\sum\left(\frac{\frac{1}{2}ab\sin C}{a}\right)^k=\frac{1}{2^k}\sum\left(\frac{\sin B\sin C}{\sin A}\right)^k\geq\frac{2}{2^k}+\left(\frac{1}{2^k}\right)^2\\ \Leftrightarrow&\sum\left(\frac{\sin B\sin C}{\sin A}\right)^k\geq2+\frac{1}{2^k} \end{aligned}
$$

置 $(x,y,z)\to(\cot A,\cot B,\cot C)$ ,有 $xy+yz+zx=1$ ,化为

$$
\sum\frac{1}{(x+y)^k}\geq2+\frac{1}{2^k}
$$

当 $k=\frac{1}{2}$ 时,有

$$
\sum\frac{1}{\sqrt{x+y}}\geq2+\frac{1}{\sqrt{2}}
$$

不妨设 $x\geq y\geq z$ 并置 $x=\frac{1-yz}{y+z}$ 有 $y+z\leq 2,yz\leq\frac{1}{3}$ 以及恒等式如下:

$$
\frac{1}{y^2+1}+\frac{1}{z^2+1}-\frac{1}{(y+z)^2+1}-1=\frac{yz[2-2yz-yz(y+z)^2]}{(y^2+1)(z^2+1)[(y+z)^2+1]}\geq0\\ \Rightarrow \frac{1}{1+y^2}+\frac{1}{1+z^2}\geq 1+\frac{1}{1+(y+z)^2}
$$

$$
1+(y+z)^2-(1+y^2)(1+z^2)=yz(2-yz)\\ \Rightarrow 1+(y+z)^2\geq (1+y^2)(1+z^2)
$$

对原式使用即:

$$
\begin{aligned}
\mathrm{L.H.S}&=\frac{1}{\sqrt{x+y}}+\frac{1}{\sqrt{y+z}}+\frac{1}{\sqrt{z+x}}\\
&=\frac{1}{\sqrt{y+z}}+\sqrt{y+z}\left(\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\right)\\
&=\frac{1}{\sqrt{y+z}}+\sqrt{y+z}\sqrt{\left(\frac{1}{1+y^2}+\frac{1}{1+z^2}+\frac{2}{\sqrt{(1+y^2)(1+z^2)}}\right)}\\
&\geq\frac{1}{\sqrt{y+z}}+\sqrt{y+z}\sqrt{\left(1+\frac{1}{1+(y+z)^2}+\frac{2}{\sqrt{1+(y+z)^2}}\right)}\\
&=\frac{1}{\sqrt{y+z}}+\sqrt{y+z}\left(1+\frac{1}{\sqrt{1+(y+z)^2}}\right)\\
&=\frac{1}{\sqrt{t}}+\sqrt{t}+\frac{1}{\sqrt{t+\frac{1}{t}}}\qquad \color{gray}{(t:=y+z)}\\
&\geq2+\frac{1}{\sqrt{2}}
\end{aligned}
$$

当 $k=1$ 时,有

$$
\sum\frac{1}{x+y}-\frac{5}{2}=\frac{4(x+y+z-2)^2+3x(y+z-1)^2+3y(z+x-1)^2+3z(x+y-1)^2+xyz}{4(x+y)(y+z)(z+x)}\geq0
$$

当 $k=2$ 时,有

$$
(xy+yz+zx)\sum\frac{1}{(x+y)^2}-\frac{9}{4}=\frac{2xyz(x^2+y^2+z^2+3xyz-x^2(y+z)-y^2(z+x)-z^2(x+y))+\sum xy(4(x+y)^2-xy)(x-y)^2}{4(x+y)^2(y+z)^2(z+x)^2}\geq0
$$


对于 $k=3$ ,取 $(x,y,z)\to\left(\frac{1}{\sqrt{5}},\frac{3}{2\sqrt{5}},\frac{7}{5\sqrt{5}}\right)$ 有 $xy+yz+zx=1$ 且

$$
\sum\frac{1}{(x+y)^3}=\frac{934231661}{210720960\sqrt{5}}=\sqrt{\frac{872788796414818921}{222016614916608000}}\leq\sqrt\frac{888066459666432000}{222016614916608000}=\sqrt{4}\leq2+\frac{1}{8}
$$

原不等式不成立。
你看不见我

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2024-12-24 15:04:07

4

Threads

57

Posts

754

Credits

Credits
754

Show all posts

ljh25252 Posted at 2024-12-25 14:41:48
lemondian 发表于 2024-12-24 15:04
https://www.zhihu.com/question/7580152178
嗯,我是本人
你看不见我

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2024-12-25 14:46:42
L.H.S. 起第三、四行漏了根号(括号改为根号)

另外,k=2 不就是伊朗96吗,为何说“稍弱于伊朗96”?

4

Threads

57

Posts

754

Credits

Credits
754

Show all posts

ljh25252 Posted at 2024-12-25 19:56:07
Last edited by ljh25252 at 2024-12-25 20:13:00
kuing 发表于 2024-12-25 14:46
L.H.S. 起第三、四行漏了根号(括号改为根号)

另外,k=2 不就是伊朗96吗,为何说“稍弱于伊朗96”? ...
我似乎记错了伊朗96,我原以为这才是

$$
\sum ab\sum\frac{1}{(a+b)^2}\geq\frac{9}{4}+\frac{15}{4}\prod\left(\frac{a-b}{a+b}\right)^2
$$

已修改了
你看不见我

手机版Mobile version|Leisure Math Forum

2025-4-21 22:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list