Forgot password?
 Register account
View 116|Reply 0

[不等式] Schur不等式平面区域当$t\to\infty$时趋于

[Copy link]

3156

Threads

7932

Posts

45

Reputation

Show all posts

hbghlyj posted 2025-1-9 10:32 |Read mode
$t\inN$求证:平面区域$$\mathcal{R}_t=\{(x,y)\in\mathbb{R}^2\mid x^{2t-1}(x-y)(x-1)+y^{2t-1}(y-1)(y-x)+(1-x)(1-y)\ge0\}$$
当$t\to\infty$时,趋于$$\mathcal{R}_\infty=\{(x,y)\in\mathbb{R}^2\mid\max(1-\max(|x|,|y|),x+y)\ge0\vee y=x\}$$如何证明呢?



不料发到MSE后被封号 故发到这里问问

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 08:36 GMT+8

Powered by Discuz!

Processed in 0.019854 second(s), 21 queries

× Quick Reply To Top Edit