Forgot password?
 Create new account
View 95|Reply 0

[不等式] Schur不等式平面区域当$t\to\infty$时趋于

[Copy link]

3151

Threads

8499

Posts

610K

Credits

Credits
66226
QQ

Show all posts

hbghlyj Posted at 2025-1-9 10:32:15 |Read mode
$t\inN$求证:平面区域$$\mathcal{R}_t=\{(x,y)\in\mathbb{R}^2\mid x^{2t-1}(x-y)(x-1)+y^{2t-1}(y-1)(y-x)+(1-x)(1-y)\ge0\}$$
当$t\to\infty$时,趋于$$\mathcal{R}_\infty=\{(x,y)\in\mathbb{R}^2\mid\max(1-\max(|x|,|y|),x+y)\ge0\vee y=x\}$$如何证明呢?



不料发到MSE后被封号 故发到这里问问

手机版Mobile version|Leisure Math Forum

2025-4-22 03:36 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list