Forgot password
 Register account
View 236|Reply 5

[几何] 包含曲线的所有切线

[Copy link]

3218

Threads

7837

Posts

52

Reputation

Show all posts

hbghlyj posted 2025-1-15 17:36 |Read mode
The theory of ruled surfaces》第4页说:曲线$\frac{x_0}{x_1}=\frac{x_1}{x_2}=\frac{x_2}{x_3}=\frac{x_3}{x_4}$的所有切线组成曲面$x_0 x_4-4 x_1 x_3+3 x_2^2=0$,如何证明呢

3218

Threads

7837

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2025-1-15 17:38
曲线上的一个点可以写成$(\theta^4,\theta^3,\theta^2,\theta,1)$
该点处的切线可以参數化為$\left(\theta^4+4\lambda \theta^3, \theta^3+3\lambda \theta^2,\theta^2+2\lambda\theta, \theta+\lambda , 1\right)$,其中$\lambda$为参数。
现在需要消去$\theta,\lambda$,怎么消去呢?

3218

Threads

7837

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2025-1-15 18:01
hbghlyj 发表于 2025-1-15 09:38
现在需要消去$\theta,\lambda$,怎么消去呢?
通过使用ExtendedGroebnerBasis,我知道了!

有恒等式:
\begin{align*}
x_0+3x_2^2-4x_1x_3&= \left(x_0-\theta ^4-4 \theta ^3 \lambda\right)\\&+4 x_3 \left(\theta ^3+3 \theta ^2 \lambda -x_1\right)
\\&-3 \left(-\lambda ^2+x_2+x_3^2\right) \left(\theta ^2+2 \theta  \lambda -x_2\right)\\
&+\left(\theta ^3+3 \theta ^2 \lambda -6 \theta  \lambda ^2+3 \theta  x_2+3 \lambda  x_2+3 x_2 x_3-3 \theta ^2 x_3-6 \theta  \lambda  x_3\right)(\theta +\lambda -x_3) \end{align*}
因此,当$\cases{x_0-\theta ^4-4 \theta ^3 \lambda=0\\\theta ^3+3 \theta ^2 \lambda -x_1=0\\\theta ^2+2 \theta  \lambda -x_2=0\\\theta +\lambda -x_3=0}$时,必有$x_0+3x_2^2-4x_1x_3=0$
青青子衿 posted 2025-1-18 21:14
不知道是否与这些曲面有某种关系?
forum.php?mod=viewthread&tid=5742

Comment

确实!我们需要合并帖子吗?  posted 2025-1-18 21:16
应该不用合并,变量的数目不一样😳  posted 2025-1-18 21:28

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 11:56 GMT+8

Powered by Discuz!

Processed in 0.014763 seconds, 25 queries