Forgot password?
 Create new account
View 113|Reply 1

[几何] 托勒密定理的推广

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2025-1-19 08:06:21 |Read mode



mathworld
Consider two directly similar triangles $△A_1B_1C_1$ and $△A_2B_2C_2$ with
$$B_1C_1:A_1C_1:A_1B_1=B_2C_2:A_2C_2:A_2B_2=a:b:c. $$
Then $a·A_1A_2, b·B_1B_2$ and $c·C_1C_2$ form the sides of a triangle. The triangle is degenerate if and only if the similitude center of $△A_1B_1C_1$ and $△A_2B_2C_2$ lies on the circumcircle of these triangles.

This theorem extends Ptolemy's theorem and the Ptolemy inequality.

Note on Mr Tweedie's Theorem in Geometry, Peter Pinkerton
Proceedings of the Edinburgh Mathematical Society, Volume 22 - February 1903
Published online by Cambridge University Press:  20 January 2009
$type note-on-mr-tweedies-theorem-in-geometry.pdf (58.95 KB, Downloads: 44)
Let ABC, A′B′C′ (Fig. 4) be two triangles equiangular in the same sense. Let BC, B′C′ meet in X. Describe circles round BXB′, CXC′ to meet again in O. Then it is easy to see that the triangles BOC, COA, AOB are equiangular in the same sense to the triangles B′OC′, C′OA′, A′OB′ respectively. Hence the triangles AOA′, BOB′, COC′ are similar;
$\therefore \frac { AA ^ { \prime } } { AO } = \frac { BB ^ { \prime } } { BO } = \frac { CC } { CO }$
$\therefore a . {AA}', b . {B B}', c \cdot {C C}'$ are proportional to $a . {A O}, b . {B O}, c . {C O}$ where $a, b, c$ are the sides of the triangle $A B C$.

From ${O}$ draw OP, OQ, OR perpendicular to BC, CA, AB respectively.
Then ${Q R}={A O} \sin {A} \propto a . {A O}$,
${RP}={BO} \sin {B} \propto b . {BO}$,
${PQ}={CO} \sin {C} \propto c . {CO}$;
$\therefore a . {A A}', b . {BB}', c . {C C}'$, being proportional to $a . {A O}, b . {BO}, c . {CO}$, are proportional to $Q R, R P, P Q$.
But PQR is a triangle, unless O is on the circumcircle of ABC when PQR is the Simson line of O.
$\therefore QR + RP>PQ$, with two similar inequalities, except that one of the inequalities becomes an equality if O is on the circumcircle of ABC.
$\therefore a. AA' + b. BB'>c.CC'$, with two similar inequalities; one of the inequalities becoming an equality when O lies on the circumcircle of ABC.
Similarly in the case of an equality O lies also on the circumcircle of A'B'C.
For the case of equilateral triangles $a = b = c$ ;
$\therefore AA' + BB'>CC'$, with two similar inequalities ; one of the three inequalities becoming an equality when O lies on the circumcircles of ABC and A'B'C.
It is obvious that the theorem reduces to Ptolemy's Theorem or its converse.

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2025-1-19 08:06:31
翻译)
$△A_1B_1C_1$和$△A_2B_2C_2$顺相似,$B_1C_1:A_1C_1:A_1B_1=B_2C_2:A_2C_2:A_2B_2=a:b:c. $
则以$a·A_1A_2, b·B_1B_2$和$c·C_1C_2$为三边可构成三角形.这个三角形是退化的,当且仅当$△A_1B_1C_1$和$△A_2B_2C_2$的相似中心在它们的外接圆上.
证明:设$△A_1B_1C_1$和$△A_2B_2C_2$的相似中心为$O$,则$△BOC,△COA,△AOB$分别与$△B'OC',△C'OA',△A'OB'$相似,$∴△AOA'\sim△BOB'\sim△COC'$,$\therefore AA':BB':CC'=AO:BO:CO$.
设$O$关于$△A_1B_1C_1$的垂足三角形为$PQR$,由正弦定理,
${Q R}={A O} \sin {A} \propto a . {A O}$,
${RP}={BO} \sin {B} \propto b . {BO}$,
${PQ}={CO} \sin {C} \propto c . {CO}$,
$\therefore a . {A A}':b . {BB}':c . {C C}'=a . {A O}: b . {BO}: c . {CO}=Q R:R P:P Q$.
因此,以$a·A_1A_2, b·B_1B_2$和$c·C_1C_2$为三边可构成三角形,这个三角形与$\triangle PQR$相似.$PQR$共线,当且仅当$O$在$△A_1B_1C_1$的外接圆上($PQR$是$O$关于$△A_1B_1C_1$的Simson线),因为$O$为相似中心,所以$O$也在$△A_2B_2C_2$的外接圆上.此时,定理化为托勒密定理.

手机版Mobile version|Leisure Math Forum

2025-4-21 14:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list