Forgot password?
 Create new account
View 142|Reply 4

[函数] 函数方程

[Copy link]

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2025-2-6 19:38:37 |Read mode
$R$是从$\mathbb R^3$到$\mathbb R^3$的函数:\[
R(x, y, z)=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)
\]通过$R$可以定义从$\mathbb R^6$到$\mathbb R^6$的函数$R_{ijk}$,只在第$i,j,k$个坐标施加$R$,其它坐标保持不变,举个例子:\[
\begin{aligned}
R_{356}\left(a_1, a_2, a_3, a_4, a_5, a_6\right) & =\left(a_1, a_2, R_1\left(a_3, a_5, a_6\right), a_4, R_2\left(a_3, a_5, a_6\right), R_3\left(a_3, a_5, a_6\right)\right) \\
& =\left(a_1, a_2, a_3^{\prime}, a_4, a_5^{\prime}, a_6^{\prime}\right),
\end{aligned}
\]函数方程\[\tag3\label3
R_{123} \circ R_{145} \circ R_{246} \circ R_{356}=R_{356} \circ R_{246} \circ R_{145} \circ R_{123}
\]
方程两边都是$\mathbb R^6$到$\mathbb R^6$的函数。

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2025-2-6 19:41:06
这里说,从电学得到\eqref{3}的解:\[
\begin{aligned}
R(x, y, z) & =\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \\
x^{\prime} & =\frac{x y}{x+z+x y z} \\
y^{\prime} & =x+z+x y z \\
z^{\prime} & =\frac{y z}{x+z+x y z} .
\end{aligned}
\]
如何验证呢?

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2025-2-6 19:53:36
用Mathematica函数复合:
  1. (*Define the mappings R1,R2,R3*)
  2. R1[{x_,y_,z_}]:=x y/(x+z+x y z);
  3. R2[{x_,y_,z_}]:=x+z+x y z;
  4. R3[{x_,y_,z_}]:=y z/(x+z+x y z);
  5. (*Define the mapping Rijk*)
  6. R[i_,j_,k_]:=Function[coords,Module[{result},result=coords;
  7. result[[i]]=R1[{coords[[i]],coords[[j]],coords[[k]]}];
  8. result[[j]]=R2[{coords[[i]],coords[[j]],coords[[k]]}];
  9. result[[k]]=R3[{coords[[i]],coords[[j]],coords[[k]]}];
  10. result]]
  11. (*verify R_{123}\circ R_{145}\circ R_{246}\circ R_{356}=R_{356}\circ R_{246}\circ R_{145}\circ R_{123} holds:*)
  12. Composition[R[3,5,6],R[2,4,6],R[1,4,5],R[1,2,3]][Table[Subscript[a,i],{i,6}]]==Composition[R[3,5,6],R[2,4,6],R[1,4,5],R[1,2,3]][Table[Subscript[a,i],{i,6}]]//Simplify
Copy the Code

Untitled.png

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2025-2-6 19:54:14
这个电学的解是如何得到的呢?

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2025-2-6 21:23:15
还有哪些函数 R 满足 \eqref{3}

手机版Mobile version|Leisure Math Forum

2025-4-21 01:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list