Forgot password?
 Register account
View 443|Reply 9

[数列] 一道递推关系为两个根号之和的数列不等式

[Copy link]

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2025-2-10 16:25 |Read mode
公式识别图片.png
妙不可言,不明其妙,不着一字,各释其妙!

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2025-2-11 01:03
先求下通项吧,令
\[a_n=b_n+\frac1{b_n},\]
其中 `b_n\geqslant1`,则 `b_1=1`,代入 `a_{n+1}=\sqrt{2a_n+4}+\sqrt{a_n-2}` 中得
\begin{align*}
b_{n+1}+\frac1{b_{n+1}}&=\sqrt{2\left(b_n+\frac1{b_n}+2\right)}+\sqrt{b_n+\frac1{b_n}-2}\\
&=\sqrt2\left(\sqrt{b_n}+\frac1{\sqrt{b_n}}\right)+\sqrt{b_n}-\frac1{\sqrt{b_n}}\\
&=\bigl(\sqrt2+1\bigr)\sqrt{b_n}+\frac1{\bigl(\sqrt2+1\bigr)\sqrt{b_n}},
\end{align*}
所以
\[b_{n+1}=\bigl(\sqrt2+1\bigr)\sqrt{b_n}\riff b_n=\bigl(\sqrt2+1\bigr)^{2-2^{2-n}},\]
即得
\[a_n=\bigl(\sqrt2+1\bigr)^{2-2^{2-n}}+\bigl(\sqrt2-1\bigr)^{2-2^{2-n}}.\]

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

 Author| 其妙 Posted 2025-2-11 14:18
kuing 发表于 2025-2-11 01:03
先求下通项吧,令
\[a_n=b_n+\frac1{b_n},\]
其中 `b_n\geqslant1`,则 `b_1=1`,代入 `a_{n+1}=\sqrt{2a_n ...
👍👍
妙不可言,不明其妙,不着一字,各释其妙!

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

 Author| 其妙 Posted 2025-2-11 14:20
那边的那道题,是两个根号之差的数列,能不能像这样求通项?

Comment

似乎不行……  Posted 2025-2-11 17:59
妙不可言,不明其妙,不着一字,各释其妙!

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2025-2-11 19:44
$a_1=2\leq6-2^{3-1}=2$
若 $a_k\leq6-2^{3-k},k\in\mathbb{N}_+$

$$
\begin{align*}
a_{k+1}&\leq\sqrt{16-2^{4-k}}+\sqrt{4-2^{3-k}}\\
&=\sqrt{2}\cdot\sqrt{8-2^{3-k}}+1\cdot\sqrt{4-2^{3-k}}\\
&\leq\sqrt{3}\cdot\sqrt{12-2^{4-k}}\\
&=2\sqrt{3(3-2^{2-k})}\\
&\leq6-2^{2-k}
\end{align*}
$$
由数学归纳法,得证.

Comment

原来不用求通项😄  Posted 2025-2-11 21:39
事实上,我一开始是想用你求出的通项去证,但是发现有点不好搞😂  Posted 2025-2-11 21:46
👍  Posted 2025-2-12 12:16
Wir müssen wissen, wir werden wissen.

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

 Author| 其妙 Posted 2025-2-12 12:14
原题是证明$a_n<6$,然后我给了一个加强的不等式(加强为证明$a_n\leq{6-\dfrac{1}{2^{n-3}}}$),还能不能再加强?
妙不可言,不明其妙,不着一字,各释其妙!

Mobile version|Discuz Math Forum

2025-6-5 07:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit