|
Hermite's cotangent identity
Warren P. Johnson, "Trigonometric Identities à la Hermite", American Mathematical Monthly, volume 117, number 4, April 2010, pages 311–327
Lemma 1. 复数 $a_1$ 与 $a_2$ 之差不为 $\pi$ 的整数倍, 则
\[
\cot \left(z-a_1\right) \cot \left(z-a_2\right)=\cot \left(a_1-a_2\right) \cot \left(z-a_1\right)+\cot \left(a_2-a_1\right) \cot \left(z-a_2\right)-1 .
\]
ProofIf $u$ and $v$ do not differ by an integer multiple of $\pi$, then
\[
\cot (u-v)=\frac{\cos u \cos v+\sin u \sin v}{\sin u \cos v-\cos u \sin v} \times \frac{\csc u \csc v}{\csc u \csc v}=\frac{\cot u \cot v+1}{\cot v-\cot u} .
\]
Set $u=z-a_1$ and $v=z-a_2$ and rearrange, and Lemma 1 follows.
Theorem 1 (Hermite). 复数 $a_1, a_2, \ldots, a_n$, 每两数之差不为 $\pi$ 的整数倍. 令
\[
A_{n, k}=\prod_{\substack{1 \leq j \leq n \\ j \neq k}} \cot \left(a_k-a_j\right),
\]
其中, 空乘积 $A_{1,1}$ 等于1. 则
\[
\cot \left(z-a_1\right) \cot \left(z-a_2\right) \cdots \cot \left(z-a_n\right)=\cos \frac{n \pi}{2}+\sum_{k=1}^n A_{n, k} \cot \left(z-a_k\right)
\]
ProofFor $n=1$ Hermite's theorem is trivial, and the case $n=2$ is Lemma 1. Assume the theorem holds up to $n$. Using Lemma 1 in the second step, we have
\begin{aligned}
&\cot \left(z-a_1\right) \cot \left(z-a_2\right) \cdots \cot \left(z-a_n\right) \cot \left(z-a_{n+1}\right) \\
=& \cos \frac{n \pi}{2} \cot \left(z-a_{n+1}\right)+\sum_{k=1}^n A_{n, k} \cot \left(z-a_k\right) \cot \left(z-a_{n+1}\right) \\
=& \cos \frac{n \pi}{2} \cot \left(z-a_{n+1}\right) \\
&+\sum_{k=1}^n A_{n, k}\left\{\cot \left(a_{n+1}-a_k\right) \cot \left(z-a_{n+1}\right)+\cot \left(a_k-a_{n+1}\right) \cot \left(z-a_k\right)-1\right\} \\
=& \cot \left(z-a_{n+1}\right)\left\{\cos \frac{n \pi}{2}+\sum_{k=1}^n A_{n, k} \cot \left(a_{n+1}-a_k\right)\right\} \\
&+\sum_{k=1}^n A_{n, k} \cot \left(a_k-a_{n+1}\right) \cot \left(z-a_k\right)\\&-\sum_{k=1}^n A_{n, k} .
\end{aligned}By the induction hypothesis, the first of these three terms equals
\[
\cot \left(z-a_{n+1}\right) \cot \left(a_{n+1}-a_1\right) \cot \left(a_{n+1}-a_2\right) \cdots \cot \left(a_{n+1}-a_n\right),
\]
which is $A_{n+1, n+1} \cot \left(z-a_{n+1}\right)$. This combines nicely with the second term, since $A_{n, k} \cot \left(a_k-a_{n+1}\right)=A_{n+1, k}$ for $1 \leq k \leq n$, so now we have
\begin{align}
&\cot \left(z-a_1\right) \cot \left(z-a_2\right) \cdots \cot \left(z-a_n\right) \cot \left(z-a_{n+1}\right) \nonumber\\
&=\sum_{k=1}^{n+1} A_{n+1, k} \cot \left(z-a_k\right)-\sum_{k=1}^n A_{n, k}\label2
\end{align}
But the induction hypothesis also implies
\begin{align}
\sum_{k=1}^n A_{n, k} &=\sum_{k=1}^{n-1} A_{n, k}+\cot \left(a_n-a_1\right) \cdots \cot \left(a_n-a_{n-1}\right)\nonumber \\
&=\sum_{k=1}^{n-1} A_{n, k}+\cos \frac{(n-1) \pi}{2}+\sum_{k=1}^{n-1} A_{n-1, k} \cot \left(a_n-a_k\right) .\label3
\end{align}
If $k<n$ then $A_{n, k}=\cot \left(a_k-a_n\right) A_{n-1, k}$, so the sums on the right side of \eqref{3} cancel, leaving us with
\begin{equation}\label4
\sum_{k=1}^n A_{n, k}=\cos \frac{(n-1) \pi}{2}=\sin \frac{n \pi}{2}=-\cos \frac{(n+1) \pi}{2} .
\end{equation}
Substituting \eqref{4} in \eqref{2} we have Hermite's theorem with $n+1$ in place of $n$.
|
|