Forgot password?
 Create new account
View 310|Reply 10

[不等式] 求证一个$n$元不等式

[Copy link]

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

lemondian Posted at 2025-2-24 15:16:51 |Read mode
已知$x_i>0,x_1^2+x_2^2+...+x_n^2=n(n\geqslant 3且\inN^*)$,证明或否定:$\dfrac{1}{x_1}+\dfrac{1}{x_2}+...+\dfrac{1}{x_n}-1\leqslant \dfrac{n-1}{x_1x_2...x_n}$.

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2025-2-25 14:57:32
高人说:用有限调整法显然成立!

可惜没有下文

17

Threads

93

Posts

1353

Credits

Credits
1353

Show all posts

yao4015 Posted at 2025-2-26 11:27:44
我却觉得用瞪眼法,这个不等式显然不成立!

Comment

来个反例吧  Posted at 2025-2-26 11:31

17

Threads

93

Posts

1353

Credits

Credits
1353

Show all posts

yao4015 Posted at 2025-2-26 12:39:47
yao4015 发表于 2025-2-26 11:27
我却觉得用瞪眼法,这个不等式显然不成立!
调侃高手的话,你还当真了?

17

Threads

93

Posts

1353

Credits

Credits
1353

Show all posts

yao4015 Posted at 2025-3-4 10:14:57
你实在有点执着哦,就给你个链接吧
emis.univie.ac.at//journals/JIPAM/images/059_06_JIPAM/059_06.pdf
方法告诉你了,不过需要你自已去做一下。我没啥兴趣做。

Comment

哗,20多页,全外文的  Posted at 2025-3-4 11:13

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2025-3-10 10:25:09
Last edited by hbghlyj at 2025-3-10 22:28:10这里又看到一个类似的题:(还是不会弄
\begin{aligned}
&\text { Let } a_1, a_2, \cdots, a_n>0 \text { and } a_1+a_2+\cdots+a_n=n(n \geq 4) \text {. Prove that }\\
&\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n} \leq 1+\frac{n-1}{a_1 a_2 \cdots a_n}
\end{aligned}

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2025-3-10 22:13:33
各位帮忙解决一下这两个不等式吧,谢谢了

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2025-3-17 16:17:03
Last edited by hbghlyj at 2025-3-17 16:20:37
lemondian 发表于 2025-3-10 10:25
这里又看到一个类似的题:(还是不会弄)
\begin{aligned}
&\text { Let } a_1, a_2, \cdots, a_n>0 \text  ...
又见一题:
Let $n \geq 4$ be an integer and $a_k \geq 0, k=1,2, \ldots, n ; a_1+a_2+\cdots+a_n=n$. Prove that
\[
\left(\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}\right) \prod_{k=1}^n a_k \leq\left(\frac{n}{n-1}\right)^{n-1}+\left[n-\left(\frac{n}{n-1}\right)^{n-1}\right] \prod_{k=1}^n a_k
\]

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2025-3-20 20:55:53
哪位达人,把这三个题解决吧😀

手机版Mobile version|Leisure Math Forum

2025-4-22 02:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list