又见一题:
Let $n \geq 4$ be an integer and $a_k \geq 0, k=1,2, \ldots, n ; a_1+a_2+\cdots+a_n=n$. Prove that
\[
\left(\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}\right) \prod_{k=1}^n a_k \leq\left(\frac{n}{n-1}\right)^{n-1}+\left[n-\left(\frac{n}{n-1}\right)^{n-1}\right] \prod_{k=1}^n a_k
\]