|
如果将$ {\frac {a}{p}} $化为b进制小数(其中p为素数,a是小于p的正整数),且小数的循环节长度是偶数(有些素数的循环节长度是奇数,如3、31),则有以下性质:- 若将这个分数用循环小数写成$ 0.{\overline {a_{1}a_{2}a_{3}...a_{n}a_{n+1}...a_{2n}}} $,则
- $ a_{i}+a_{i+n}=b-1 $
- $ a_{1}\dots a_{n}+a_{n+1}\dots a_{2n}=b^{n}-1. $
推广:若把长度2n的循环节划分为长度为k的$ {\frac {2n}{k}} $个组,即$ 0.{\overline {a_{1}a_{2}\cdots a_{k}a_{k+1}\cdots a_{2k}\cdots a_{2n-k+1}a_{2n-k+2}\cdots a_{2n}}} $,则$ a_{1}a_{2}...a_{k}+a_{k+1}a_{k+2}...a_{2k}+...+a_{2n-k+1}a_{l-k+2}...a_{2n} $是$ b^{k}-1 $的倍数。
|
|