Forgot password?
 Register account
View 124|Reply 0

[数论] 循环小数性质

[Copy link]

3158

Threads

7933

Posts

45

Reputation

Show all posts

hbghlyj posted 2025-3-9 01:04 |Read mode
如果将$ {\frac {a}{p}} $化为b进制小数(其中p为素数,a是小于p的正整数),且小数的循环节长度是偶数(有些素数的循环节长度是奇数,如3、31),则有以下性质:
  • 若将这个分数用循环小数写成$ 0.{\overline {a_{1}a_{2}a_{3}...a_{n}a_{n+1}...a_{2n}}} $,则
  • $ a_{i}+a_{i+n}=b-1 $
  • $ a_{1}\dots a_{n}+a_{n+1}\dots a_{2n}=b^{n}-1. $

推广:若把长度2n的循环节划分为长度为k的$ {\frac {2n}{k}} $个组,即$ 0.{\overline {a_{1}a_{2}\cdots a_{k}a_{k+1}\cdots a_{2k}\cdots a_{2n-k+1}a_{2n-k+2}\cdots a_{2n}}} $,则$ a_{1}a_{2}...a_{k}+a_{k+1}a_{k+2}...a_{2k}+...+a_{2n-k+1}a_{l-k+2}...a_{2n} $是$ b^{k}-1 $的倍数。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 07:00 GMT+8

Powered by Discuz!

Processed in 0.023294 second(s), 21 queries

× Quick Reply To Top Edit