Forgot password?
 Register account
View 458|Reply 1

[函数] 阿达玛不适定例子

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-3-16 07:34 |Read mode
Last edited by hbghlyj 2025-3-16 08:46適定性問題來自於數學家 Hadamard 所給出的定義。他認為物理現象中的數學模型應該具備下述性質:
  • 存在解
  • 解是唯一的
  • 解隨著起始條件連續的改變

  1. DSolve[Laplacian[u[x, y], {x, y}] == x^2 + 3 x y + y^2, u[x, y], {x, y}]
Copy the Code
$u(x,y)= c_1(x-i y)+ c_2(x+i y)+\frac{1}{2} \left(x^3 y+x^2 y^2\right)$
特解
$$u_1(x,y):=\frac{1}{12} \left(x^4+6 x^3 y+y^4\right)$$ .png
  1. Clear[u1]
  2. u1[x_,y_]:=(x^4+6 x^3  y +y^4)/12;
  3. Xaxe=ParametricPlot3D[{x,0,0},{x,-2,2},PlotRange->{{-2, 2},{-2,2},{-6,10.7}},ImageSize->400, PlotStyle -> {Thickness[0.003],Green}];
  4. Yaxe=ParametricPlot3D[{0,y,0},{y,-2,2},PlotRange->{{-2, 2},{-2,2},{-6,10.7}},ImageSize->400, PlotStyle ->{ Thickness[0.003],Red}];
  5. Zaxe=ParametricPlot3D[{0,0,z},{z,-6,10.7},PlotRange->{{-2, 2},{-2,2},{-6,10.7}},ImageSize->400, PlotStyle ->{ Thickness[0.003],Blue}];
  6. u1graph=Plot3D[u1[x,y],{x,-2,2},{y,-2,2},PlotRange->{{-2, 2},{-2,2},{-6,10.7}},ImageSize->400, PlotStyle -> Thickness[0.003]];
  7. Show[Xaxe,Yaxe,Zaxe,u1graph]
Copy the Code

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2025-3-16 07:49
Last edited by hbghlyj 2025-3-16 09:12逆問題通常是不適定的。见 elliptic PDE 的例子:
$u_1(x,y)=0$
$u_2(x,y)=\dfrac{\sin (n x) \sinh (n y)}{n^{k+1}}$
则有
$\displaystyle\left| {{u_1}\left( 0,y \right) - {u_2}\left(0,y\right)} \right|$ 当 $n\to\infty$ 时趋于 0
  1. udivy[n_, x_] := 1/n^k Sin[n x];
  2. frames = Table[
  3.     Plot[udivy[n, x], {x, 0, Pi}, PlotRange -> {{0, Pi}, {-1, 1}},
  4.      ImageSize -> 600], {n, 1, 20}];
  5. Export["output.gif", frames, "DisplayDurations" -> 0.1]
Copy the Code
output.gif
$\displaystyle\left| {{u_1}\left( {\frac{\pi }{2},y} \right) - {u_2}\left( {\frac{\pi }{2},y} \right)} \right| = \frac{\sinh (ny)}{n^2} = \frac{{{e^{ny}} - {e^{ - ny}}}}{{2{n^2}}}$
当 $n\to\infty$ 时趋于无穷
  1. Clear[u]
  2. k=1;
  3. u[n_,x_,y_]:=1/n^(k+1) Sin[n x] Sinh[n y];
  4. frames=Table[Plot3D[u[n,x,y],{x,0,Pi},{y,0,3},PlotStyle->Thickness[0.003]],{n,1,10,1}];
  5. Export["animation.gif",frames,"DisplayDurations"->0.25]
Copy the Code
animation.gif

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit