Last edited by hbghlyj 2025-3-16 08:46適定性問題來自於數學家 Hadamard 所給出的定義。他認為物理現象中的數學模型應該具備下述性質:
- DSolve[Laplacian[u[x, y], {x, y}] == x^2 + 3 x y + y^2, u[x, y], {x, y}]
Copy the Code $u(x,y)= c_1(x-i y)+ c_2(x+i y)+\frac{1}{2} \left(x^3 y+x^2 y^2\right)$
特解
$$u_1(x,y):=\frac{1}{12} \left(x^4+6 x^3 y+y^4\right)$$
- Clear[u1]
- u1[x_,y_]:=(x^4+6 x^3 y +y^4)/12;
- Xaxe=ParametricPlot3D[{x,0,0},{x,-2,2},PlotRange->{{-2, 2},{-2,2},{-6,10.7}},ImageSize->400, PlotStyle -> {Thickness[0.003],Green}];
- Yaxe=ParametricPlot3D[{0,y,0},{y,-2,2},PlotRange->{{-2, 2},{-2,2},{-6,10.7}},ImageSize->400, PlotStyle ->{ Thickness[0.003],Red}];
- Zaxe=ParametricPlot3D[{0,0,z},{z,-6,10.7},PlotRange->{{-2, 2},{-2,2},{-6,10.7}},ImageSize->400, PlotStyle ->{ Thickness[0.003],Blue}];
- u1graph=Plot3D[u1[x,y],{x,-2,2},{y,-2,2},PlotRange->{{-2, 2},{-2,2},{-6,10.7}},ImageSize->400, PlotStyle -> Thickness[0.003]];
- Show[Xaxe,Yaxe,Zaxe,u1graph]
Copy the Code |